首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

2.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

3.
Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core–shell structure of the monodisperse molecule magnet of [Gd52Ni56(IDA)48(OH)154(H2O)38]@SiO2 ( 1 a @SiO2) was prepared by encapsulating one high‐nuclearity lanthanide–transition‐metal compound of [Gd52Ni56(IDA)48(OH)154(H2O)38]?(NO3)18?164 H2O ( 1 ) (IDA=iminodiacetate) into one silica nanosphere through a facile one‐pot microemulsion method. 1 a @SiO2 was characterized using transmission electron microscopy, N2 adsorption–desorption isotherms, and inductively coupled plasma‐atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1=0.25 cm?1, J2=?0.060 cm?1, J3=?0.22 cm?1, J4=?8.63 cm?1, g=1.95, and z J=?2.0×10?3 cm?1 for 1 , and J1=0.26 cm?1, J2=?0.065 cm?1, J3=?0.23 cm?1, J4=?8.40 cm?1 g=1.99, and z J=0.000 cm?1 for 1 a @SiO2. The z J=0 in 1 a @SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.  相似文献   

4.
Abstract. Two radical–LnIII–radical complexes, [Ln(hfac)3(NITPh‐Ph)2] [Ln = Gd ( 1 ) and Ho ( 2 ), hfac = hexafluoroacetylacetonate; and NITPh‐Ph = 4′‐biphenyl‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide] were synthesized and characterized by X‐ray diffraction, elemental analysis, magnetic measurements, as well as IR and UV/Vis spectroscopy. X‐ray crystal structure analysis revealed that the structures of both complexes are isomorphous, the central LnIII ions are coordinated by six oxygen atoms from three hfac ligand molecules and two oxygen atoms from nitronyl radicals. The temperature dependencies of the magnetic susceptibilities were studied. They showed that in the GdIII complex, ferromagnetic interactions between GdIII and the radicals and antiferromagnetic interactions between the radicals coexist in this system (with JRad–Gd = 0.1 cm–1, JRad–Rad = –0.309 cm–1).  相似文献   

5.
Three pairs of enantiopure chiral triangular Ln3 clusters, [Ln3LRRRRRR/SSSSSS3‐OH)2(H2O)2(SCN)4]?xCH3OH?yH2O ( R ‐Dy3 , Ln=Dy, x=6, y=0; S ‐Dy3 , Ln=Dy, x=6, y=1; R ‐Ho3 , Ln=Ho, x=6, y=1; S ‐Ho3 , Ln=Ho, x=6, y=1; R ‐Er3 , Ln=Er, x=6, y=0; S ‐Er3 , Ln=Er, x=6, y=1), have been successfully synthesized by a rational enantioselective synthetic strategy. The core of triangular Ln3 is bound in the central N6O3 of the macrocyclic ligand, and the coordination spheres of Ln ions are completed by four SCN? anions and two H2O molecules in axial positions of the macrocycle. The circular dichroism (CD) and vibrational circular dichroism (VCD) spectra of the enantiomers demonstrate that the chirality is successfully transferred from the ligands to the resulting Ln3 clusters. Ac susceptibility measurements reveal that single‐molecule magnet behavior occurs for both enantiopure clusters of R ‐Dy3 and S ‐Dy3 . This work is one of the few examples of the successful design of a pair of triangular Dy3 clusters showing simultaneously slow magnetic relaxation and optical activity, and this might open up new opportunities to develop novel multifunctional materials.  相似文献   

6.
Assembly of the triangular, organic radical‐bridged complexes Cp*6Ln33‐HAN) (Cp*=pentamethylcyclopentadienyl; Ln=Gd, Tb, Dy; HAN=hexaazatrinaphthylene) proceeds through the reaction of Cp*2Ln(BPh4) with HAN under strongly reducing conditions. Significantly, magnetic susceptibility measurements of these complexes support effective magnetic coupling of all three LnIII centers through the HAN3−. radical ligand. Thorough investigation of the DyIII congener through both ac susceptibility and dc magnetic relaxation measurements reveals slow relaxation of the magnetization, with an effective thermal relaxation barrier of Ueff=51 cm−1. Magnetic coupling in the DyIII complex enables a large remnant magnetization at temperatures up to 3.0 K in the magnetic hysteresis measurements and hysteresis loops that are open at zero‐field up to 3.5 K.  相似文献   

7.
The tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide ( L ) ligand has been employed to coordinate 4f elements. The architecture of the complexes mainly depends on the ionic radii of the lanthanides. Thus, the reaction of L in the same experimental protocol leads to three different molecular structure series. Binuclear [Ln2(hfac)5(O2CPhCl)( L )3] ? 2 H2O (hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion, O2CPhCl?=3‐chlorobenzoate anion) and mononuclear [Ln(hfac)3( L )2] complexes were obtained by using rare‐earth ions with either large (LnIII=Pr, Gd) or small (LnIII=Y, Yb) ionic radius, respectively, whereas the use of TbIII that possesses an intermediate ionic radius led to the formation of a binuclear complex of formula [Tb2(hfac)4(O2CPhCl)2( L )2]. Antiferromagnetic interactions have been observed in the three dinuclear compounds by using an extended empirical method. Photophysical properties of the coordination complexes have been studied by solid‐state absorption spectroscopy, whereas time‐dependent density functional theory (TD‐DFT) calculations have been carried out on the diamagnetic YIII derivative to build a molecular orbital diagram and to reproduce the absorption spectrum. For the [Yb(hfac)3( L )2] complex, the excitation at 19 600 cm?1 of the HOMO→LUMO+1/LUMO+2 charge‐transfer transition induces both line‐shape emissions in the near‐IR spectral range assigned to the 2F5/22F7/2 (9860 cm?1) ytterbium‐centered transition and a residual charge‐transfer emission around 13 150 cm?1. An efficient antenna effect that proceeds through energy transfer from the singlet excited state of the tetrathiafulvalene‐amido‐2‐pyridine‐N‐oxide chromophore is evidence of the YbIII sensitization.  相似文献   

8.
The homometallic hexameric ruthenium cluster of the formula [RuIII63‐O)2(μ‐OH)2((CH3)3CCO2)12(py)2] ( 1 ) (py=pyridine) is solved by single‐crystal X‐ray diffraction. Magnetic susceptibility measurements performed on 1 suggest that the antiferromagnetic interaction between the RuIII centers is dominant, and this is supported by theoretical studies. Theoretical calculations based on density functional methods yield eight different exchange interaction values for 1 : J1=?737.6, J2=+63.4, J3=?187.6, J4=+124.4, J5=?376.4, J6=?601.2, J7=?657.0, and J8=?800.6 cm?1. Among all the computed J values, six are found to be antiferromagnetic. Four exchange values (J1, J6, J7 and J8) are computed to be extremely strong, with J8, mediated through one μ‐hydroxo and a carboxylate bridge, being by far the largest exchange obtained for any transition‐metal cluster. The origin of these strong interactions is the orientation of the magnetic orbitals in the RuIII centers, and the computed J values are rationalized by using molecular orbital and natural bond order analysis. Detailed NMR studies (1H, 13C, HSQC, NOESY, and TOCSY) of 1 (in CDCl3) confirm the existence of the solid‐state structure in solution. The observation of sharp NMR peaks and spin‐lattice time relaxation (T1 relaxation) experiments support the existence of strong intramolecular antiferromagnetic exchange interactions between the metal centers. A broad absorption peak around 600–1000 nm in the visible to near‐IR region is a characteristic signature of an intracluster charge‐transfer transition. Cyclic voltammetry experiments show that there are three reversible one‐electron redox couples at ?0.865, +0.186, and +1.159 V with respect to the Ag/AgCl reference electrode, which corresponds to two metal‐based one‐electron oxidations and one reduction process.  相似文献   

9.
In order to shed light upon the nature and mechanism of 4f-3d magnetic exchange interactions, a series of binuclear complexes of lanthanide(3+) and chromium(3+) with the general formula [Ln(L)5(H2O)2Cr(CN)6]·mL· nH2O (Ln=La (1), Ce (2), Pr (3), Nd (4); x=5, y=2, m=1 or 2, n=2 or 2.5; L=2-pyrrolidinone) and [Ln(L)4(H2O)3Cr(CN)6] ·nH2O (Ln=Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Er (10); x=4, y=3, m=0, n= 1.5 or 2.0; L=2-pyrrolidinone) were prepared and the X-ray crystal structures of complexes 2, 6 and 7 were determined. All the compounds consist of a Ln-CN-Cr unit, in which Ln^3+ in a square antiprism environment is bridged to an octahedral coordinated Cr^3+ ion through a cyano group. The magnetic properties of the complexes 3 and 6-10 show an overall antiferromagnetic behavior. The fitting to the experimental magnetic susceptibilities of 7 give g= 1.98, J=0.40 cm^-1, zJ'= -0.21 cm^-1 on the basis of a binuclear spin system (Scd=7/2, Scr=3/2), revealing an intra-molecular Gd^3+-Cr^3+ ferromagnetic interaction and an inter-molecular antiferromagnetic interaction. For 7 the calculation of quantum chemical density functional theory (DFT), combined with the broken symmetry approach, showed that the calculated spin coupling constant was 20.3 cm^-1, supporting the observation of weak ferromagnetic intra-molecular interaction in 7. The spin density distributions of 7 in both the high spin ground state and the broken symmetry state were obtained, and the spin coupling mechanism between Gd^3+ and Cr^3+ was discussed.  相似文献   

10.
Two novel trinuclear complexes [ZnCl(μ‐L)Ln(μ‐L)ClZn][ZnCl3(CH3OH)]?3 CH3OH (LnIII=Dy ( 1 ) and Er ( 2 )) have been prepared from the compartmental ligand N,N′‐dimethyl‐N,N′‐bis(2‐hydroxy‐3‐formyl‐5‐bromo‐benzyl)ethylenediamine (H2L). X‐ray studies reveal that LnIII ions are coordinated by two [ZnCl(L)]? units through the phenoxo and aldehyde groups, giving rise to a LnO8 coordination sphere with square‐antiprism geometry and strong easy‐axis anisotropy of the ground state. Ab initio CASSCF+RASSI calculations carried out on 1 confirm that the ground state is an almost pure MJ=±15/2 Kramers doublet with a marked axial anisotropy, the magnetic moment is roughly collinear with the shortest Dy?O distances. This orientation of the local magnetic moment of the DyIII ion in 1 is adopted to reduce the electronic repulsion between the oblate electron shape of the MJ=±15/2 Kramers doublet and the phenoxo‐oxygen donor atoms involved in the shortest Dy?O bonds. CASSCF+RASSI calculations also show that the ground and first excited states of the DyIII ion are separated by 129 cm?1. As expected for this large energy gap, compound 1 exhibits, in a zero direct‐current field, thermally activated slow relaxation of the magnetization with a large Ueff=140 K. The isostructural Zn–Er–Zn species does not present significant SMM behavior as expected for the prolate electron‐density distribution of the ErIII ion leading to an easy‐plane anisotropy of the ground doublet state.  相似文献   

11.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

12.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

13.
Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)‐iPr‐Pybox (2,6‐bis[4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine) and (SRSR/RSRS)‐Ind‐Pybox (2,6‐bis[8H‐indeno[1,2‐d]oxazolin‐2‐yl]pyridine), have been combined with lanthanide ions (Gd3+, Nd3+) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN?‐bridged coordination chains: {[LnIII(SS/RRiPr‐Pybox)(dmf)4]3[WV(CN)8]3}n ? dmf ? 4 H2O (Ln=Gd, 1 ‐SS and 1 ‐RR; Ln=Nd, 2 ‐SS and 2 ‐RR) and {[LnIII(SRSR/RSRS‐Ind‐Pybox)(dmf)4][WV(CN)8]}n ? 5 MeCN ? 4 MeOH (Ln=Gd, 3 ‐SRSR and 3 ‐RSRS; Ln=Nd, 4 ‐SRSR and 4 ‐RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200–450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the GdIII‐WV chains show dominant ligand‐based red phosphorescence, with λmax≈660 nm for 1 ‐(SS/RR) and 680 nm for 3 ‐(SRSR/RSRS). The NdIII‐WV chains, 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS), exhibit near‐infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra‐f 4F3/24I9/2,11/2,13/2 transitions of the NdIII centers. This emission is realized through efficient ligand‐to‐metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [WV(CN)8]3? moieties connected by cyanide bridges, 1 ‐(SS/RR) and 3 ‐(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between GdIII (SGd=7/2) and WV (SW=1/2) centers with J 1 ‐(SS)=?0.96(1) cm?1, J 1 ‐(RR)=?0.95(1) cm?1, J 3 ‐(SRSR)=?0.91(1) cm?1, and J 3 ‐(RSRS)=?0.94(1) cm?1. 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS) display ferromagnetic coupling within their NdIII‐NC‐WV linkages.  相似文献   

14.
Lanthanide triflates have been used to incorporate NdIII and SmIII ions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3 complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8 in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdII cryptand complex, assign a 4f4 electron configuration to this ion.  相似文献   

15.
Two novel tetranuclear, star‐shaped iron(III) clusters, [Fe4(acac)6(Br‐mp)2] and [FeIII4(acac)6(tmp)2], are described. Both have S=5 ground states resulting from antiferromagnetic nearest‐neighbour superexchange interactions, with J=?8.2 cm?1 and J=?8.5 cm?1 for 1 and 2 , respectively. Energy barriers for the relaxation of the magnetisation of approximately 12 cm?1 were derived from AC susceptibility measurements. Magnetic resonance measurements revealed a zero‐field splitting parameter D=?0.34 cm?1 for both complexes. AC susceptibility measurements in solution demonstrated that the complexes are reasonably stable in solution. Interestingly, the magnetisation relaxation slows down significantly in frozen solution, in contrast to what is generally observed for single‐molecule magnets. This was shown to result from a large increase in τ0, the prefactor in the Arrhenius equation, with the energy barrier remaining unchanged.  相似文献   

16.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   

17.
A series of heterometallic [LnIIIxCuIIy] complexes, [Gd2Cu2]n ( 1 ), [Gd4Cu8] ( 2 ), [Ln9Cu8] (Ln=Gd, 3?Gd ; Ln=Dy, 3?Dy ), were successfully synthesized by a one‐pot route at room temperature with three kinds of in situ carbonyl‐related reactions: Cannizzaro reaction, aldol reaction, and oxidation. This strategy led to dysprosium analogues that behaved as single‐molecule magnets (SMMs) and gadolinium analogues that showed significant magnetocaloric effect (MCE). In this study a numerical DFT approach is proposed by using pseudopotentials to calculate the exchange coupling constants in three polynuclear [GdxCuy] complexes; with these values exact diagonalization or quantum Monte Carlo simulations have been performed to calculate the variation of the magnetic entropy involved in the MCE. For the [Dy9Cu8] complexes, local magnetic properties of the DyIII centers have been determined by using the CASSCF+RASSI method.  相似文献   

18.
Five acetate-diphenoxo triply-bridged CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er) of formula [Co(μ-L)(μ-Ac)Ln(NO3)2] and two diphenoxo doubly-bridged CoII-LnIII complexes (LnIII = Gd, Tb) of formula [Co(H2O)(μ-L)Ln(NO3)3]·S (S = H2O or MeOH), were prepared in one pot reaction from the compartmental ligand N,N′,N′′-trimethyl-N,N′′-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylene triamine (H2L). The diphenoxo doubly-bridged CoII-LnIII complexes were used as platforms to obtain 1,5-dicyanamide-bridged tetranuclear CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er). All exhibit ferromagnetic interactions between the CoII and LnIII ions and in the case of the GdIII complexes, the JCoGd were estimated to be ∼+0.7 cm−1. Compound 3 exhibits slow relaxation of the magnetization.  相似文献   

19.
The syntheses and crystal structures of eight lanthanide complexes with formula [Ln(2,5‐DCB)x(phen)y] are reported, which are characterized via single‐crystal, powder X‐ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis, photoluminescence measurement, and DC/AC magnetic measurement. These eight complexes are isostructural, and possess a discrete dinuclear structure. The adjacent dinuclear molecules are linked by the hydrogen bonding interactions into a one‐dimensional (1D) supramolecular chain. The neighboring 1D chains are further extended into a two‐dimensional (2D) supramolecular layer by the π–π stacking interactions. The photoluminescent properties of complexes 1 (NdIII), 2 (SmIII), 3 (EuIII), 5 (TbIII), 6 (DyIII), and 8 (YbIII) were investigated. Magnetic investigations also reveal the presence of ferromagnetic interactions in complexes 4 (GdIII), 6 (DyIII), and 7 (ErIII). Additionally, complex 6 (DyIII) demonstrates field‐induced slow magnetic relaxation behavior.  相似文献   

20.
N‐Substituted aminoethyl groups were attached to 1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic acid (DO3A) with the aim to design pH‐responsive LnIII complexes based on the pH‐dependent on/off ligation of the amine nitrogen to the metal ion. The following ligands were synthesized: AE ‐ DO3A (aminoethyl‐DO3A), MAE ‐ DO3A (N‐methylaminoethyl‐DO3A), DMAE ‐ DO3A (N,N‐dimethylaminoethyl‐DO3A) and MEM ‐ AE ‐ DO3A (N‐methoxyethyl‐N‐methylaminoethyl‐DO3A). The physicochemical properties of the LnIII complexes were investigated for the evaluation of their potential applicability as magnetic resonance imaging (MRI) contrast agents. In particular, a 1H and 17O NMR relaxometric study was carried out for these GdIII complexes at two different pH values: at basic pH (pendant amino group coordinated to the metal centre) and at acidic pH (protonated amine, not interacting with the metal ion). EuIII complexes allow one to estimate the number of inner‐sphere water molecules through luminescence lifetime measurements and obtain some structural information through variable‐temperature (VT) high‐resolution 1H NMR studies. Equilibria between differently hydrated species were found for most of the complexes at both acidic and basic pH. The thermodynamic stability of CaII, ZnII, CuII and LnIII complexes and kinetics of formation and dissociation reactions of LnIII complexes of AE ‐ DO3A and DMAE ‐ DO3A were investigated showing stabilities comparable to currently approved GdIII‐based CAs. In detail, higher total basicity (Σlog KiH) and higher stability constants of LnIII complexes were found for AE ‐ DO3A with respect to DMAE ‐ DO3A (i.e., log KGd‐ AE‐DO3A =22.40 and log KGd‐ DMAE‐DO3A =20.56). The transmetallation reactions of GdIII complexes are very slow (Gd‐ AE ‐ DO3A : t1/2=2.7×104 h; Gd‐ DMAE ‐ DO3A : 1.1×105 h at pH 7.4 and 298 K) and occur through proton‐assisted dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号