首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast moving : A new pentad (see figure) composed of silicon phthalocyanine (SiPc), as electron donor, that is connected with two units of naphthalenediimide (NDI) and fullerene C60, as electron acceptors, undergoes fast and efficient charge‐separation processes via the NDI and SiPc singlet excited states.

  相似文献   


2.
The chromophores ethynyl pyrene as blue, ethynyl perylene as green and ethynyl Nile red as red emitter were conjugated to the 5‐position of 2′‐deoxyuridine via an acetylene bridge. Using phosphoramidite chemistry on solid phase labelled DNA duplexes were prepared that bear single chromophore modifications, and binary and ternary combinations of these chromophore modifications. The steady‐state and time‐resolved fluorescence spectra of all three chromophores were studied in these modified DNA duplexes. An energy‐transfer cascade occurs from ethynyl pyrene over ethynyl perylene to ethynyl Nile red and subsequently an electron‐transfer cascade in the opposite direction (from ethynyl Nile red to ethynyl perylene or ethynyl pyrene, but not from ethynyl perylene to ethynyl pyrene). The electron‐transfer processes finally provide charge separation. The efficiencies by these energy and electron‐transfer processes can be tuned by the distances between the chromophores and the sequences. Most importantly, excitation at any wavelength between 350 and 700 nm finally leads to charge separated states which make these DNA samples promising candidates for light‐harvesting systems.  相似文献   

3.
The target artificial light‐harvesting antenna, comprising 21 discrete chromophores arranged in a logical order, undergoes photochemical bleaching when dispersed in a thin plastic film. The lowest‐energy component, which has an absorption maximum at 660 nm, bleaches through first‐order kinetics at a relatively fast rate. The other components bleach more slowly, in part, because their excited‐state lifetimes are rendered relatively short by virtue of fast intramolecular electronic energy transfer to the terminal acceptor. Two of the dyes, these being close to the terminal acceptor but interconnected through a reversible energy‐transfer step, bleach by way of an autocatalytic step. Loss of the terminal acceptor, thereby switching off the energy‐transfer route, escalates the rate of bleaching of these ancillary dyes. The opposite terminal, formed by a series of eight pyrene‐based chromophores, does not bleach to any significant degree. Confirmation of the various bleaching steps is obtained by examination of an antenna lacking the terminal acceptor, where the autocatalytic route does not exist and bleaching is very slow.  相似文献   

4.
A coupled light‐harvesting antenna–charge‐separation system, consisting of self‐assembled zinc chlorophyll derivatives that incorporate an electron‐accepting unit, is reported. The cyclic tetramers that incorporated an electron acceptor were constructed by the co‐assembly of a pyridine‐appended zinc chlorophyll derivative, ZnPy , and a zinc chlorophyll derivative further decorated with a fullerene unit, ZnPyC60 . Comprehensive steady‐state and time‐resolved spectroscopic studies were conducted for the individual tetramers of ZnPy and ZnPyC60 as well as their co‐tetramers. Intra‐assembly singlet energy transfer was confirmed by singlet–singlet annihilation in the ZnPy tetramer. Electron transfer from the singlet chlorin unit to the fullerene unit was clearly demonstrated by the transient absorption of the fullerene radical anion in the ZnPyC60 tetramer. Finally, with the co‐tetramer, a coupled light‐harvesting and charge‐separation system with practically 100 % quantum efficiency was demonstrated.  相似文献   

5.
High oxidation potential perfluorinated zinc phthalocyanines (ZnFnPcs) are synthesised and their spectroscopic, redox, and light‐induced electron‐transfer properties investigated systematically by forming donor–acceptor dyads through metal–ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine‐ (Py) and phenylimidazole‐functionalised fullerene (C60Im) derivatives to the zinc centre of the FnPcs. The determined binding constants, K, in o‐dichlorobenzene for the 1:1 complexes are in the order of 104 to 105 M ?1; nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6‐31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnFnPc.+–C60Im.? and ZnFnPc.+–C60Py.? (n=0, 8 or 16) intra‐supramolecular charge‐separated states during electron transfer. Electrochemical studies on the ZnPc–C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge‐separated states. The energy of the charge‐separated state for dyads composed of ZnFnPc is higher than that of normal ZnPc–C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar‐energy harvesting and optoelectronic device building applications.  相似文献   

6.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

7.
New C60 and C70 fullerene dyads formed with 4‐amino‐1,8‐naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge‐transfer naphthalimide chromophore as a light‐absorbing antenna and excited‐singlet‐state sensitizer of fullerenes. The underlying intramolecular singlet–singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (ΦEnT≈1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground‐state aminonaphthalimide was postulated as an additional path.  相似文献   

8.
Two new supramolecular architectures based on zinc phthalocyanine (Pc) and imidazolyl‐substituted perylenediimide (PDI), ZnPc/DImPDI/ZnPc 1 and ZnPc/ImPDI 2 , have been prepared. A strong electron‐donor, 8 , which contained eight tert‐octylphenoxy groups was synthesized to ensure high solubility, thereby reducing aggregation in solution and providing σ‐donor features while avoiding regioisomeric mixtures. Also, PDI units were functionalized with tert‐octylphenoxy groups at the bay positions, which provide solubility to avoid aggregation in solution, together with one and two imidazole moieties in the amide position, 6 and 4 , respectively, to be able to strongly coordinate with the ZnPc complex. Supramolecular complexation studies by 1H NMR spectroscopy and ESI‐MS demonstrate a high coordinative binding constant between imidazole‐substituted 4 or 6 and 8 . The same results were confirmed by UV/Vis and fluorescence titration studies. UV/Vis titration studies revealed the formation of a 1:1 complex ZnPc/ImPDI 2 for the systems 8 and 6 and a 2:1 complex ZnPc/DImPDI/ZnPc 1 for the interaction of 8 and 4 . The binding constant in both cases was determined to be on the order of 105 M −1. Femtosecond laser flash photolysis measurements provided a direct proof of the charge‐separated state within both supramolecular assemblies by observing the transient absorption band at 820 nm due to the zinc phthalocyanine radical cation. The lifetimes of charge‐separated states are (9.8±3) ns for triad 1 and (3±1) ns for dyad 2 . As far as we know, this is the first time that a radical ion pair has been detected in a supramolecular assembled ZnPc–PDI system and has obtained the longest lifetime of a charge‐separated state published for ZnPc–PDI assemblies.  相似文献   

9.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

10.
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium.  相似文献   

11.
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process.  相似文献   

12.
A novel multimodular donor–acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge‐stabilizing, photosynthetic‐antenna/reaction‐center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge‐separation/hole‐migration events leading to the creation of a long‐lived charge‐separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3‐21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet‐singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge‐separated state persisted for about 8.5 μs and was governed by the distance between the final charge‐transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge‐stabilizing triphenylamine entities located on the zinc‐porphyrin macrocycle.  相似文献   

13.
An artificial light‐harvesting multiporphyrin dendrimer ( 8PZnPFB ) composed of a focal freebase porphyrin ( PFB ) with eight zinc(II) porphyrin ( PZn ) wings exhibited unique photophysical property switching in response to specific guest molecule binding. UV/Vis titration studies indicated stable 1:2 host–guest complex formation between 8PZnPFB and meso‐tetrakis(4‐pyridyl)‐porphyrin ( TPyP ) for which the first and second association constants were estimated to be >108 M ?1 and 3.0×107 M ?1, respectively. 8PZnPFB originally shows 94 % energy transfer efficiency from PZn to the focal PFB . By the formation of the host–guest complex ( 8PZnPFB? 2 TPyP ) the emission intensity of 8PZnPFB is significantly decreased, and an ultrafast charge separation state is generated. The energy transfer process from PZn wings to the PFB core in 8PZnPFB is almost entirely switched to an electron transfer process by the formation of 8PZnPFB? 2 TPyP .  相似文献   

14.
Oligophenylenevinylene (OPV)‐terminated phenylenevinylene dendrons G1 – G4 with one, two, four, and eight “side‐arms”, respectively, were prepared and attached to C60 by a 1,3‐dipolar cycloaddition of azomethine ylides generated in situ from dendritic aldehydes and N‐methylglycine. The relative electronic absorption of the OPV moiety increases progressively along the fullerodendrimer family C60G1 – C60G4 , reaching a 99:1 ratio for C60G4 (antenna effect). UV/Vis and near‐IR luminescence and transient absorption spectroscopy was used to elucidate photoinduced energy and electron transfer in C60G1 – C60G4 as a function of OPV moiety size and solvent polarity (toluene, dichloromethane, benzonitrile), taking into account the fact that the free‐energy change for electron transfer is the same along the series owing to the invariability of the donor–acceptor couple. Regardless of solvent, all the fullerodendrimers exhibit ultrafast OPV→C60 singlet energy transfer. In CH2Cl2, the OPV→C60 electron transfer from the lowest fullerene singlet level (1C60*) is slightly exergonic (ΔGCS≈0.07 eV), but is observed, to an increasing extent, only in the largest systems C60G2 – C60G4 with lower activation barriers for electron transfer. This effect has been related to a decrease of the reorganization energy upon enlargement of the molecular architecture. Structural factors are also at the origin of an unprecedented OPV→C60 electron transfer observed for C60G3 and C60G4 in apolar toluene, whereas in benzonitrile, electron transfer occurs in all cases. Monitoring of the lowest fullerene triplet state by sensitized singlet oxygen luminescence and transient absorption spectroscopy shows that this level is populated through intersystem crossing and is not involved in photoinduced electron transfer.  相似文献   

15.
A non‐covalent double‐decker binding strategy is employed to construct functional supramolecular single‐wall carbon nanotubes (SWCNT)–tetrapyrrole hybrids capable of undergoing photoinduced electron transfer and performing direct conversion of light into electricity. To accomplish this, two semiconducting SWCNTs of different diameters (6,5 and 7,6) were modified via π–π stacking of pyrene functionalized with an alkyl ammonium cation (PyrNH3+). Such modified nanotubes were subsequently assembled via dipole–cation binding of zinc porphyrin with one ( 1 ) or four benzo‐18‐crown‐6 cavities ( 2 ) or phthalocyanine with four benzo‐18‐crown‐6 cavities at the ring periphery ( 3 ), employed as visible‐light photosensitizers. Upon charactering the conjugates using TEM and optical techniques, electron transfer via photoexcited zinc porphyrin and phthalocyanine was investigated using time‐resolved emission and transient absorption techniques. Higher charge‐separation efficiency is established for SWCNT(7,6) with a narrow band gap than the thin SWCNT(6,5) with a wide band gap. Photoelectrochemical studies using FTO/SnO2 electrodes modified with these donor–acceptor conjugates unanimously demonstrated the ability of these conjugates to convert light energy into electricity. The photocurrent generation followed the trend observed for charge separation, that is, incident‐photon‐to‐current efficiency (IPCE) of a maximum of 12 % is achieved for photocells with FTO/SnO2/SWCNT(7,6)/PyrNH3+: 1 .  相似文献   

16.
17.
A novel strategy is developed for the fabrication of graphene–CdS (G–CdS) nanocomposites by in situ growth of CdS nanoparticles onto simultaneously reduced graphite oxide, which is noncovalently functionalized by sodium 1‐pyrene sulfonate through strong π–π stacking interactions. Subsequently, cobalt 2,9,16,23‐tetraaminophthalocyanine (CoTAPc) is self‐assembled on the G–CdS nanocomposites through electrostatic interactions to produce phthalocyanine‐sensitized G–CdS nanocomposites. The photoactive superstructure enhances the photocurrent generation capability, and presents an efficient photoelectrochemical immunosensing platform for the ultrasensitive detection of the prostate‐specific antigen (PSA). The quantitative measurement of PSA is based on the decrease in the photocurrent intensity of the phthalocyanine‐sensitized G–CdS nanocomposites, which results from an increase in the steric hindrance due to the formation of the immunocomplex. A linear relationship between the photocurrent decrease and the PSA concentration is obtained in the wide range from 1 pg mL?1 to 5 μg mL?1 with a detection limit of 0.63 pg mL?1. The proposed sensor shows high sensitivity, stability, reproducibility, and can become a promising platform for other biomolecular detection.  相似文献   

18.
New covalently C60‐conjugated phthalocyanine (Pc) analogues in which the Pc and C60 components are connected by means of a four‐membered ring have been synthesized by taking advantage of a [2+2] cycloaddition reaction of C60 with benzyne units generated from either a phthalocyanine derivative ( 8 ) or its precursor ( 1 ). The reaction of 1 with PhI(OAc)2 and trifluoromethanesulfonic acid (TfOH) followed by the [2+2] cycloaddition of C60 in the presence of tetra‐n‐butylammonium fluoride (TBAF) yielded the C60‐substituted Pc precursor ( 3 ). Mixed condensation of 3 and 4,5‐dibutylsulfonylphthalonitrile ( 4 ) in a thermally promoted template reaction using a nickel salt successfully gave the Pc–C60 conjugate ( 5 ). Results of mass spectrometry and 1H and 13C NMR spectroscopy clearly indicate the formation of the anticipated Pc–C60 conjugate. Direct coupling of C60 with the Pc analogue that contained eight peripheral trimethylsilyl (TMS) groups ( 8 ) also proceeded successfully, such that mono and bis C60‐adducts were detected by their mass, although the isolation of each derivative was difficult. The absorption and magnetic circular dichroism (MCD) spectra of 5 and the reference compound ( 7 ) differ from each other in the Q‐band region, thereby suggesting that the presence of the C60 moiety affects the electronic structure of the conjugate. The reduction and oxidation potentials of 5 and 7 obtained by cyclic voltammetry are comparative, except for the C60‐centered reduction couple at ?1.53 V versus Fc+/Fc in o‐dichlorobenzene (o‐DCB). A one‐electron reduction of 5 and 7 in tetrahydrofuran (THF) by using the sodium mirror technique results in the loss of band intensity in the Q‐band region, whereas the characteristic marker bands for Pc‐ring‐centered reduction appear at around 430, 600, and 900 nm for both compounds. The final spectral shapes of 5 and 7 upon the reduction resemble each other, thus indicating that no significant molecular orbital (MO) interactions between the C60 and Pc units are present for the reduced species of 5 . In contrast, the oxidized species of 5 and 7 generated by the addition of NOBF4 in CH2Cl2 show significantly different absorption spectra from each other. Whereas the broad bands at approximately 400–550 nm of 7 + are indicative of the cationic π‐radical species of metallo‐Pcs and can be assigned to a transition from a low‐lying MO to the half‐filled MO, no corresponding bands were observed for 5 +. These spectral characteristics have been tentatively assigned to the delocalized occupied frontier MOs for 5 +. The experimental results are broadly supported by DFT calculations.  相似文献   

19.
20.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号