首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Top‐down methods are of key importance for large‐scale graphene and graphene oxide preparation. Electrochemical exfoliation of graphite has lately gained much interest because of the simplicity of execution, the short process time, and the good quality of graphene that can be obtained. Here, we test three different electrolytes, that is, H2SO4, Na2SO4, and LiClO4, with a common exfoliation procedure to evaluate the difference in structural and chemical properties that result for the graphene. The properties are analyzed by means of scanning transmission electron microscopy (STEM), Raman spectroscopy, and X‐ray photoelectron spectroscopy. We then tested the graphene materials for electrochemical applications, measuring the heterogeneous electron transfer (HET) rates with a Fe(CN)63?/4? redox probe, and their capacitive behavior in alkaline solutions. We correlate the electrochemical features with the presence of structural defects and oxygen functionalities on the graphene materials. In particular, the use of LiClO4 during the electrochemical exfoliation of graphite allowed the formation of highly oxidized graphene with a C/O ratio close to 4.0 and represents a possible avenue for the mass production of graphene oxide as valid alternative to the current laborious and dangerous chemical procedures, which also have limited scalability.  相似文献   

2.
To bridge the gap between laboratory-scale studies and commercial applications, mass production of high quality graphene is essential. A scalable exfoliation strategy towards the production of graphene sheets is presented that has excellent yield (ca. 75 %, 1–3 layers), low defect density (a C/O ratio of 21.2), great solution-processability, and outstanding electronic properties (a hole mobility of 430 cm2 V−1 s−1). By applying alternating currents, dual exfoliation at both graphite electrodes enables a high production rate exceeding 20 g h−1 in laboratory tests. As a cathode material for lithium storage, graphene-wrapped LiFePO4 particles deliver a high capacity of 167 mAh g−1 at 1 C rate after 500 cycles.  相似文献   

3.
Thin‐layer 2D materials have been attracting enormous interest, and various processes have been investigated to obtain these materials efficiently. In view of their practical applications, the most desirable source for the preparation of these thin‐layer materials is the pristine bulk materials with stacked layers, such as pristine graphite. There are many options in terms of conditions for the exfoliation of thin‐layer materials, and these include wet and dry processes, with or without additives, and the kind of solvent. In this context, we found that the versatile exfoliant hexahydroxytriphenylene works efficiently for the exfoliation of typical 2D materials such as graphene, MoS2, and hexagonal boron nitride (h‐BN) by both wet and dry processes by using sonication and ball milling, respectively, in aqueous and organic solvents. As for graphene, stable dispersions with relatively high concentrations (up to 0.28 mg mL?1) in water and tetrahydrofuran were obtained from graphite in the presence of hexahydroxytriphenylene by a wet process with the use of bath sonication and by a dry process involving ball milling. Especially, most of the graphite was exfoliated and dispersed as thin‐layer graphene in both aqueous and organic solvents through ball milling, even on a large scale (47–86 % yield). In addition, the exfoliant was easily removed from the precipitated composite by heat treatment without disturbing the graphene structure. Bulk MoS2 and h‐BN were also exfoliated by both wet and dry processes. Similar to graphene, dispersions of MoS2 and h‐BN of high concentrations in water and DMF were produced in high yields through ball milling.  相似文献   

4.
High-yield production of few-layer graphene flakes from graphite is important for the scalable synthesis and industrial application of graphene. However, high-yield exfoliation of graphite to form graphene sheets without using any oxidation process or super-strong acid is challenging. Here we demonstrate a solution route inspired by the lithium rechargeable battery for the high-yield (>70%) exfoliation of graphite into highly conductive few-layer graphene flakes (average thickness <5 layers). A negative graphite electrode can be electrochemically charged and expanded in an electrolyte of Li salts and organic solvents under high current density and exfoliated efficiently into few-layer graphene sheets with the aid of sonication. The dispersible graphene can be ink-brushed to form highly conformal coatings of conductive films (15 ohm/square at a graphene loading of <1 mg/cm(2)) on commercial paper.  相似文献   

5.
Bulk quantities of graphene nanosheets and nanodots have been selectively fabricated by mechanical grinding exfoliation of natural graphite in a small quantity of ionic liquids. The resulting graphene sheets and dots are solvent free with low levels of naturally absorbed oxygen, inherited from the starting graphite. The sheets are only two to five layers thick. The graphene nanodots have diameters in the range of 9-29 nm and heights in the range of 1-16 nm, which can be controlled by changing the processing time.  相似文献   

6.
A new and efficient method to produce a large quantity of high‐quality and non‐oxidized graphene flakes from powdered natural graphite by using a high‐intensity cavitation field in a pressurized ultrasonic reactor is demonstrated. TEM and selected‐area electron diffraction (SAED) confirmed the ordered graphite crystal structure of graphene. Atomic force microscopy (AFM) was used to examine the thickness of the graphene sheets. The delamination (exfoliation) of natural graphite in the liquid phase depends on the physical effects of ultrasound, which break down the 3D graphite structure into a 2D graphene structure. The prepared graphene is of high purity and without defects because no strongly oxidizing chemicals are used and no toxic products result. TEM shows that graphene nanosheets were produced with sizes in the range of tens to hundreds of square nanometers; these nanosheets were smooth and without any ripples and corrugations. High‐resolution TEM (HRTEM) and SAED analysis confirmed that the products were graphene nanosheets.  相似文献   

7.
Graphene oxide dispersions in organic solvents   总被引:4,自引:0,他引:4  
The dispersion behavior of graphene oxide in different organic solvents has been investigated. As-prepared graphite oxide could be dispersed in N, N-dimethylformamide, N-methyl-2-pyrrolidone, tetrahydrofuran, and ethylene glycol. In all of these solvents, full exfoliation of the graphite oxide material into individual, single-layer graphene oxide sheets was achieved by sonication. The graphene oxide dispersions exhibited long-term stability and were made of sheets between a few hundred nanometers and a few micrometers large, similar to the case of graphene oxide dispersions in water. These results should facilitate the manipulation and processing of graphene-based materials for different applications.  相似文献   

8.
Magnetic CoFe2O4-functionalized graphene sheets (CoFe2O4-FGS) nanocomposites have been synthesized by hydrothermal treatment of inorganic salts and thermal exfoliated graphene sheets. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show that cobalt ferrite nanoparticles with sizes of 10-40 nm are well dispersed on graphene sheets. OH was recognized as a tie to integrate the inorganic salts with the graphene sheets, which made reaction started and developed on the surface of graphene sheets and formed cobalt ferrite nanoparticles on graphene sheets. The adsorption kinetics investigation revealed that the adsorption of methyl orange from aqueous solution over the as-prepared CoFe2O4-FGS nanocomposites followed pseudo-second-order kinetic model and the adsorption capacity was examined as high as 71.54 mg g−1. The combination of the superior adsorption of FGS and the magnetic properties of CoFe2O4 nanoparticles can be used as a powerful separation tool to deal with water pollution.  相似文献   

9.
A water‐soluble surfactant consisting of hexa‐peri‐hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self‐assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L?1 containing 2–6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100–500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements.  相似文献   

10.
We present a facile route for the preparation of TiO2–graphene composites by in situ growth of TiO2 in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum‐assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)4 and the surfactant into the interlayers of EG. Subsequently, numerous TiO2 nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO2–graphene composites. The as‐prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO2 nanoparticles homogeneously cover the surface of high‐quality graphene sheets. The graphene exhibits a multi‐layered structure (5–7 layers). Notably, the TiO2–graphene composite (only 30 wt % of which is TiO2) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants.  相似文献   

11.
功能型单层石墨烯的热剥离法制备及其超电容性能   总被引:1,自引:0,他引:1  
以氧化石墨(GO)作为前驱体,在两种不同热剥离温度下制备了两类功能型单层石墨烯.其中第一类功能型单层石墨烯通过在较低温度及空气气氛下热剥离GO制备;第二类功能型单层石墨烯通过在氮气保护下高温热剥离GO得到;利用氮气吸附-脱附方法测定了两类样品的比表面积,利用电化学测试方法分析了其超电容性能.结果表明,通过低温热剥离的方式即可以有效剥离GO;两类样品均具有较高的BET比表面积.低温热剥离GO所制备的功能型单层石墨烯在2 mol/L KOH体系中的最大比电容值约为220 F/g;而通过高温热剥离GO所制备的功能型单层石墨烯虽然同样具有较高的BET比表面积,但其最大比电容值下降至约150 F/g.这表明通过低温热剥离GO所制备的功能型单层石墨烯具有更优异的超电容性能.  相似文献   

12.
Heteroatom functionalization on a graphene surface can endow the physical and structural properties of graphene. Here, a one-step in situ polymerization method was used for the noncovalent functionalization of a graphene surface with poly-N-vinyl-2-pyrrolidone (PNVP) and the exfoliation of graphite into graphene sheets. The obtained graphene/poly-N-vinyl pyrrolidone (GPNVP) composite was thoroughly characterized. The surface morphology of GPNVP was observed using field emission scanning electron microscopy and high-resolution transmission electron microscopy. Raman spectroscopy and X-ray diffraction studies were carried out to check for the exfoliation of graphite into graphene sheets. Thermogravimetric analysis was performed to calculate the amount of PNVP on the graphene surface in the GPNVP composite. The successful formation of the GPNVP composite and functionalization of the graphene surface was confirmed by various studies. The cyclic voltammetry measurement at different scan rates (5–500 mV/s) and electrochemical impedance spectroscopy study of the GPNVP composite were performed in the typical three-electrode system. The GPNVP composite has excellent rate capability with the capacitive property. This study demonstrates the one-pot preparation of exfoliation and functionalization of a graphene surface with the heterocyclic polymer PNVP; the resulting GPNVP composite will be an ideal candidate for various electrochemical applications.  相似文献   

13.
We report lithium ion intercalation mediated efficient exfoliation of graphite to form monolithic graphene sheets which have subsequently been investigated for the development of highly sensitive label-free electrochemical detection platform for cardiac biomarker, Troponin I (cTnI). The spectroscopic and morphological analysis demonstrated the formation of defect free graphene sheets which were successfully employed to fabricate an inter-digited microdevice in a drain-source configuration on a silicon biochip. The graphene gated biochip functionalized with anti-cTnI antibodies used in label free detection of cTnI which exhibited an excellent sensitivity in the picogram range (∼1 pg mL−1) for cTnI without the use of any enzymatic amplification that promises its potential applicability for bio-molecular detection in clinical diagnosis.  相似文献   

14.

In present work, we describe the synthesis of graphite intercalation compounds with perrhenic acid (HReO4-GIC) through the anodic oxidation of graphite in aqueous perrhenic acid solution and their thermal exfoliation. Due to electrochemical treatment of graphite in perrhenic acid solution, ReO4 ions are intercalated into interlayer spaces of graphite. Anodic oxidation of graphite in HReO4 solution leads to the formation of 3-stage GIC. Simultaneously, some amount of perrhenic acid becomes deposited on the graphite surface and edges. In the next step, thermal treatment of the previously synthesized GIC was performed, causing both the exfoliation of graphitic structure and transformation of perrhenic acid into rhenium oxides on the surface of graphene layers. The yielded product was exfoliated graphite-ReO2/ReO3 composite. The obtained composite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. Additionally, specific surface area of the exfoliated materials was measured.

  相似文献   

15.
The simultaneous polymer functionalization and exfoliation of graphene sheets by using mild bath sonication and heat treatment at low temperature is described. In particular, free‐radical polymerization of three different vinyl monomers takes place in the presence of graphite flakes. The polymerization procedure leads to the exfoliation of graphene sheets and at the same time the growing polymer chains are attached onto the graphene lattice, which gives solubility and stability to the final graphene‐based hybrid material. The polymer‐functionalized graphene sheets possess fewer defects as compared with previously reported polymer‐functionalized graphene. The success of the covalent functionalization and exfoliation of graphene was confirmed by using a variety of complementary spectroscopic, thermal, and microscopy techniques, including Raman, IR and UV/Vis spectroscopy, thermogravimetric analysis, and transmission electron microscopy.  相似文献   

16.
The influence of dimensional effects on the compositions and properties of polydicarbonfluoride (C2F)n prepared from multilayered graphenes was investigated. Multilayered graphenes were produced by destructive thermal decomposition of intercalation compounds of “idealized” (C2F)n that were obtained by reaction of gaseous ClF3 with natural graphite at a room temperature. The precursors of multilayered graphenes have a common formula (C2F?xR)n where R is an organic or inorganic component. It was shown that polydicarbonfluoride prepared from multilayered graphene does not form stable intercalation compound with ClF3, in contrast to polydicarbonfluoride prepared from graphite, that forms its intercalation compound with ClF3 during fluorination of initial graphite in the ClF3 excess. Investigations of polydicarbonfluoride prepared from multilayered graphene showed that it cannot form intercalation compounds with different classes of organic and inorganic compounds as polydicarbonfluoride prepared from graphite can do. The absence of such intercalation activity for polydicarbonfluoride prepared from multilayered graphene can be explained by high exfoliation degree of multilayered graphene (3–4 nm) along the c‐axis that results in the presence of two‐dimensional (2D) structure properties in multilayered graphene. Dimensional effects transformed the chemical properties of polydicarbonfluoride prepared from multilayered graphene and lowered its decomposition temperature by 150 K in comparison with polydicarbonfluoride prepared from graphite.  相似文献   

17.
Graphene has attracted a great deal of attention in recent years due to its unusual electronic, mechanical, and thermal properties. Exploiting graphene properties in a variety of applications requires a chemical approach for the large‐scale production of high‐quality, processable graphene sheets (GS), which has remained an unanswered challenge. Herein, we report a rapid one‐pot supercritical fluid (SCF) exfoliation process for the production of high‐quality, large‐scale, and processable graphene for technological applications. Direct high‐yield conversion of graphite crystals to GS is possible under SCF conditions because of the high diffusivity and solvating power of SCFs, such as ethanol, N‐methyl‐pyrrolidone (NMP), and DMF. For the first time, we report a one‐pot direct conversion of graphite crystals to a high yield of graphene sheets in which about 90–95 % of the exfoliated sheets are <8 layers with approximately 6–10 % monolayers and the remaining 5–10 % are ≥10 layers.  相似文献   

18.
Zn2GeO4/N‐doped graphene nanocomposites have been synthesized through a fast microwave‐assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well‐embedded in N‐doped graphene sheets by in situ reducing and doping. Importantly, the N‐doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume‐expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as‐formed Zn2GeO4/N‐doped graphene nanocomposite exhibits high capacity (1463 mAh g?1 at a current density of 100 mA g?1), good cyclability, and excellent rate capability (531 mAh g?1 at a current density of 3200 mA g?1). Its superior lithium‐storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well‐stabilized by the high electronic conduction and flexibility of N‐doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary‐oxide‐based composites as high‐performance electrode materials that involve structural conversion and transformation.  相似文献   

19.
The wide use of lithium ion batteries (LIBs) has created much waste, which has become a global issue. It is vital to recycle waste LIBs considering their environmental risks and resource characteristics. Anode graphite from spent LIBs still possess a complete layer structure and contain some oxygen-containing groups between layers, which can be reused to prepare high value-added products. Given the intrinsic defect structure of anode graphite, copper foils in LIB anode electrodes, and excellent properties of graphene, graphene oxide–copper composite material was prepared in this work. Anode graphite was firstly purified to remove organic impurities by calcination and remove lithium. Purified graphite was used to prepare graphene oxide–copper composite material after oxidation to graphite oxide, ultrasonic exfoliation to graphene oxide (GO), and Cu2+ adsorption. Compared with natural graphite, preparing graphite oxide using anode graphite consumed 40% less concentrated H2SO4 and 28.6% less KMnO4. Cu2+ was well adsorbed by 1.0 mg L?1 stable GO suspension at pH 5.3 for 120 min. Graphene oxide–copper composite material could be successfully obtained after 6 h absorption, 3 h bonding between GO and Cu2+ with 3/100 of GO/CuSO4 mass ratio. Compared to CuO, graphene oxide–copper composite material had better catalytic photodegradation performance on methylene blue, and the electric field further improved the photodegradation efficiency of the composite material.  相似文献   

20.
Functionalized single graphene sheets derived from splitting graphite oxide   总被引:17,自引:0,他引:17  
A process is described to produce single sheets of functionalized graphene through thermal exfoliation of graphite oxide. The process yields a wrinkled sheet structure resulting from reaction sites involved in oxidation and reduction processes. The topological features of single sheets, as measured by atomic force microscopy, closely match predictions of first-principles atomistic modeling. Although graphite oxide is an insulator, functionalized graphene produced by this method is electrically conducting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号