首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of inhibitors of Hsp90 is currently a primary goal in the development of more effective drugs for the treatment of various types of multidrug resistant malignancies. In an attempt to identify new small molecules modulating the activity of Hsp90, we screened a small library of tetranortriterpenes. A high‐affinity interaction with Hsp90 inducible form was uncovered for eight of these compounds, five of which are described here for the first time. By monitoring the ATPase activity and the citrate synthase thermal induced aggregation, compound 1 (cedrelosin A), 3 (7α‐limonylacetate), and 5 (cedrelosin B), containing a limonol moiety, were found to be the most effective in compromising the Hsp90α chaperone activity. Consistent with these findings, the three compounds caused a depletion of c‐Raf and pAkt Hsp90 client proteins in HeLa and MCF/7 cell lines. Induced fit docking protocol and molecular dynamics were used to rationalize the structural basis of the biological activity of the limonol derivatives. Taken together, these results point to limonol‐derivatives as promising scaffolds for the design of novel Hsp90α inhibitors.  相似文献   

2.
Development of heat shock protein 90 (Hsp90) C‐terminal inhibitors has emerged as an exciting strategy for the treatment of cancer. Previous efforts have focused on modifications to the natural products novobiocin and coumermycin. Moreover, variations in both the sugar and amide moieties have been extensively studied, whereas replacements for the coumarin core have received less attention. Herein, 24 cores were synthesized with varying distances and angles between the sugar and amide moieties. Compounds that exhibited good anti‐proliferative activity against multiple cancer cell lines and Hsp90 inhibitory activity, were those that placed the sugar and amide moieties between 7.7 and 12.1 Å apart along with angles of 180°.  相似文献   

3.
A series of resorcylic acid macrolactones, analogues of the natural product radicicol has been prepared by chemical synthesis, and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. The synthesis involves acylation of an ortho‐toluic acid dianion, esterification, followed by a ring‐closing metathesis to form the macrocycle. Subsequent manipulation of the protected hydroxymethyl side chain allows access to a range of new analogues following deprotection of the two phenolic groups. Co‐crystallization of one of the new macrolactones with the N‐terminal domain of yeast Hsp90 confirms that it binds in a similar way to the natural product radicicol and to our previous synthetic analogues, but that the introduction of the additional hydroxymethyl substituent appears to result in an unexpected change in conformation of the macrocyclic ring. As a result of this conformational change, the compounds bound less favorably to Hsp90.  相似文献   

4.
5.
A series of benzo‐macrolactones has been prepared by chemical synthesis, and evaluated as inhibitors of heat shock protein 90 (Hsp90), an emerging attractive target for novel cancer therapeutic agents. A new synthesis of these resorcylic acid macrolactone analogues of the natural product radicicol is described in which the key steps are the acylation and ring opening of a homophthalic anhydride to give an isocoumarin, followed by a ring‐closing metathesis to form the macrocycle. The methodology has been extended to a novel series of macrolactones incorporating a 1,2,3‐triazole ring.  相似文献   

6.
DOT1L is the sole protein methyltransferase that methylates histone H3 on lysine 79 (H3K79), and is a promising drug target against cancers. Small‐molecule inhibitors of DOT1L such as FED1 are potential anti‐cancer agents and useful tools to investigate the biological roles of DOT1L in human diseases. FED1 showed excellent in vitro inhibitory activity against DOT1L, but its cellular effect was relatively poor. In this study, we designed and synthesized photo‐reactive and “clickable” affinity‐based probes (AfBPs), P1 and P2 , which were cell‐permeable and structural mimics of FED1 . The binding and inhibitory effects of these two probes against DOT1L protein were extensively investigated in vitro and in live mammalian cells (in situ). The cellular uptake and sub‐cellular localization properties of the probes were subsequently studied in live‐cell imaging experiments, and our results revealed that, whereas both P1 and P2 readily entered mammalian cells, most of them were not able to reach the cell nucleus where functional DOT1L resides. This offers a plausible explanation for the poor cellular activity of FED1 . Finally with P1 / P2 , large‐scale cell‐based proteome profiling, followed by quantitative LC‐MS/MS, was carried out to identify potential cellular off‐targets of FED1 . Amongst the more than 100 candidate off‐targets identified, NOP2 (a putative ribosomal RNA methyltransferase) was further confirmed to be likely a genuine off‐target of FED1 by preliminary validation experiments including pull‐down/Western blotting (PD/WB) and cellular thermal shift assay (CETSA).  相似文献   

7.
A series of RuII–arene complexes ( 1 – 6 ) of the general formula [(η6‐arene)Ru(L)Cl]PF6 (arene=benzene or p‐cymene; L=bidentate β‐carboline derivative, an indole alkaloid with potential cyclin‐dependent kinases (CDKs) inhibitory activities) is reported. All the complexes were fully characterized by classical analytical methods, and three were characterized by X‐ray crystallography. Hydrolytic studies show that β‐carboline ligands play a vital role in their aqueous behaviour. These complexes are highly active in vitro, with the most active complex 6 displaying a 3‐ to 12‐fold higher anticancer activity than cisplatin against several cancer cell lines. Interestingly, the complexes are able to overcome cross‐resistance to cisplatin, and show much lower cytotoxicity against normal cells. Complexes 1 – 6 may directly target CDK1, because they can block cells in the G2M phase, down‐regulate the expression of CDK1 and cyclin B1, and inhibit CDK1/cyclin B in vitro. Further mechanism studies show that the complexes can effectively induce apoptosis through mitochondrial‐related pathways and intracellular reactive oxygen species (ROS) elevation.  相似文献   

8.
The treatment of non‐small‐cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) inhibitors is made challenging by acquired resistance caused by somatic mutations. Third‐generation EGFR inhibitors have been designed to overcome resistance through covalent binding to the Cys 797 residue of the enzyme, and these inhibitors are effective against most clinically relevant EGFR mutants. However, the high dependence of these recent EGFR inhibitors on this particular interaction means that additional mutation of Cys 797 results in poor inhibitory activity, which leads to tumor relapse in initially responding patients. A new generation of irreversible and reversible mutant EGFR inhibitors was developed with strong noncovalent binding properties, and these compounds show high inhibitory activities against the cysteine‐mutated L858R/T790M/C797S EGFR.  相似文献   

9.
Interactions of multivalent anionic porphyrins and their iron(III) complexes with cationic peptides, V3Ba‐L and V3IIIB, which correspond to those of the V3 loop regions of the gp120 envelope proteins of the HIV‐1Ba‐L and HIV‐1IIIB strains, respectively, are studied by UV/Vis, circular dichroism, 1H NMR, and EPR spectroscopy, a microcalorimetric titration method, and anti‐HIV assays. Tetrakis(3,5‐dicarboxylatophenyl)porphyrin (P1), tetrakis[4‐(3,5‐dicarboxylatophenylmethoxy)phenyl]porphyrin (P2), and their ferric complexes (FeIIIP1 and FeIIIP2) were used as the multivalent anionic porphyrins. P1 and FeIIIP1 formed stable complexes with both V3 peptides (binding constant K>106 M ?1) through combined electrostatic and van der Waals interactions. Coordination of the His residues in V3Ba‐L to the iron center of FeIIIP1 also played an important role in the complex stabilization. As P2 and FeIIIP2 form self‐aggregates in aqueous solution even at low concentrations, detailed analysis of their interactions with the V3 peptides could not be performed. To ascertain whether the results obtained in the model system are applicable to a real biological system, anti‐HIV‐1BA‐L and HIV‐1IIIB activity of the porphyrins is examined by multiple nuclear activation of a galactosidase indicator (MAGI) and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assays. There is little correlation between chemical analysis and actual anti‐HIV activity, and the size rather than the number of the anionic groups of the porphyrin is important for anti‐HIV activity. All the porphyrins show high selectivity, low cytotoxicity, and high viral activity. FeIIIP1 and FeIIIP2 are used for the pharmacokinetic study. Half‐lives of these iron porphyrins in serum of male Wistar rats are around 4 to 6 h owing to strong interaction of these porphyrins with serum albumin.  相似文献   

10.
Blockade of the protein–protein interaction between the transmembrane protein programmed cell death protein 1 (PD‐1) and its ligand PD‐L1 has emerged as a promising immunotherapy for treating cancers. Using the technology of mirror‐image phage display, we developed the first hydrolysis‐resistant D ‐peptide antagonists to target the PD‐1/PD‐L1 pathway. The optimized compound DPPA‐1 could bind PD‐L1 at an affinity of 0.51 μM in vitro. A blockade assay at the cellular level and tumor‐bearing mice experiments indicated that DPPA‐1 could also effectively disrupt the PD‐1/PD‐L1 interaction in vivo. Thus D ‐peptide antagonists may provide novel low‐molecular‐weight drug candidates for cancer immunotherapy.  相似文献   

11.
The use of nanoparticle‐stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine‐functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self‐assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90 % knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo‐like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.  相似文献   

12.
Enhanced metabolism of fucose through fucosidase overexpression is a signature of some cancer types, thus suggesting that fucosidase‐targetted ligands could play the role of drug‐delivery vectors. Herein, we describe the synthesis of a new series of pyrrolidine–ferrocene conjugates, consisting of a L ‐fuco‐configured dihydroxypyrrolidine as the fucosidase ligand armed with a cytotoxic ferrocenylamine moeity. Three‐dimensional structures of several of these fucosidase inhibitors reveal transition‐state‐mimicking 3E conformations. Elaboration with the ferrocenyl moiety results in sub‐micromolar inhibitors of both bovine and bacterial fucosidases, with the 3D structure of the latter revealing electron density indicative of highly mobile alkylferrocene compounds. The best compounds show a strong antiproliferative effect, with up to 100 % inhibition of the proliferation of MDA‐MB‐231 cancer cells at 50 μM .  相似文献   

13.
Benzimidazole derivatives are widely studied because of their broad‐spectrum biological activity, such as antitumor properties and excellent fluorescence performance. Herein, two types of 2‐(5‐phenylindol‐3‐yl)benzimidazole derivatives ( 1 a – 1 h and 2 a – 2 e ) were rationally designed and synthesized. When these compounds were investigated in vitro anti‐screening assays, we found that all of them possessed antitumor effect, in particular compound 1 b , which showed an outstanding antiproliferative effect on MDA‐MB‐231 cells (IC50≈2.6 μm ). A study of the drug action mechanisms in cells showed that the antitumor activity of the compounds is proportional to their lipophilicity and cellular uptake; the tested compounds all entered the lysosome of MDA‐MB‐231 cells and caused changes in the levels of reactive oxygen species (ROS), and then caused mitochondrial damage. Apparent differences in the ROS levels for each compound suggest that the lethality of these compounds towards MDA‐MB‐231 cells is closely related to the ROS levels. Taken together, this study not only provides a theoretical basis for 2‐(5‐phenylindol‐3‐yl)benzimidazole anticarcinogens but also offers new thinking on the rational design of next‐generation antitumor benzimidazole derivatives.  相似文献   

14.
Histone deacetylases inhibitors (HDACis) have gained much attention as a new class of anticancer agents in recent years. Herein, we report a series of fluorescent ruthenium(II) complexes containing N1‐hydroxy‐N8‐(1,10‐phenanthrolin‐5‐yl)octanediamide ( L ), a suberoylanilide hydroxamic acid (SAHA) derivative, as a ligand. As expected, these complexes show interesting chemiphysical properties, including relatively high quantum yields, large Stokes shifts, and long emission lifetimes. The in vitro inhibitory effect of the most effective drug, [Ru(DIP)2 L ](PF6)2 ( 3 ; DIP: 4,7‐diphenyl‐1,10‐phenanthroline), on histone deacetylases (HDACs) is approximately equivalent in activity to that of SAHA, and treatment with complex 3 results in increased levels of the acetylated histone H3. Complex 3 is highly active against a panel of human cancer cell lines, whereas it shows relatively much lower toxicity to normal cells. Further mechanism studies show that complex 3 can elicit cell cycle arrest and induce apoptosis through mitochondria‐related pathways and the production of reactive oxygen species. These data suggest that these fluorescent ruthenium(II)–HDACi conjugates may represent a promising class of anticancer agents for potential dual imaging and therapeutic applications targeting HDACs.  相似文献   

15.
16.
17.
Tumor initiating cells (TICs) have been implicated in clinical relapse and metastasis of a variety of epithelial cancers, including lung cancer. While efforts toward the development of specific probes for TIC detection and targeting are ongoing, a universal TIC probe has yet to be developed. We report the first TIC‐specific fluorescent chemical probe, TiY, with identification of the molecular target as vimentin, a marker for epithelial‐to‐mesenchymal transition (EMT). TiY selectively stains TICs over differentiated tumor cells or normal cells, and facilitates the visualization and enrichment of functionally active TICs from patient tumors. At high concentration, TiY also shows anti‐TIC activity with low toxicity to non‐TICs. With the unexplored target vimentin, TiY shows potential as a first universal probe for TIC detection in different cancers.  相似文献   

18.
Aminopeptidase N (APN) was closely associated with cancer invasion, metastasis, and angiogenesis. Therefore, APN inhibitors have attracted more and more attention of scientists as antitumor agents. In the current study, we designed, synthesized, and evaluated one new series of pyrazoline-based hydroxamate derivatives as APN inhibitors. Moreover, the structure–activity relationships of those were discussed in detail. 2,6-Dichloro substituted compound 14o with R1 = CH3, showed the best capacity for inhibiting APN with an IC50 value of 0.0062 ± 0.0004 μM, which was three orders of magnitude better than that of the positive control bestatin. Compound 14o possessed both potent anti-proliferative activities against tumor cells and potent anti-angiogenic activity. At the same concentration of 50 μM, compound 14o exhibited much better capacity for inhibiting the micro-vessel growth relative to bestatin in the rat thoracic aorta ring model. Additionally, the putative interactions of 14o with the active site of APN are also discussed. The hydroxamate moiety chelated the zinc ion and formed four hydrogen bonds with His297, Glu298 and His301. Meanwhile, the terminal phenyl group and another phenyl group of 14o interacted with S2′ and S1 pockets via hydrophobic effects, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号