Crystal structures and thermal properties of cobaltocenium salts with bis(perfluoroalkylsulfonyl)amide (CnF2n+1SO2)2N anions [n=0 ( 1 ), 1 ( 1 a ), 2 ( 1 b ), 3 ( 1 c ), and 4 ( 1 d )] and the 1,1,2,2,3,3‐hexafluoropropane‐1,3‐disulfonylamide anion ( 2 ) were investigated. In these solids, the cations are surrounded by four anions around their C5 axis, and stacking of these local structures forms two kinds of assembled structures. In the salts with even n ( 1 , 1 b , and 1 d ), the cation and anion are arranged alternately to form mixed‐stack columns in the crystal. In contrast, in the salts with odd n ( 1 a and 1 c ), the cations and anions independently form segregated‐stack columns. An odd–even effect was also observed in the sum of the phase‐change entropies from crystal to melt. All of the salts exhibited phase transitions in the solid state. The phase transitions to the lowest‐temperature phase in 1 , 1 a , and 2 are accompanied by order–disorder of the anions and symmetry lowering of the space group, which results in the formation of an ion pair. Solid‐state 13C NMR measurements on 1 a and 1 b revealed enhanced molecular motions of the cation in the higher‐temperature phases. 相似文献
A new series of ionic crystals, KH2[Cr3O(OOCCH3)6(H2O)3][α‐SiMo12O40] · 11 H2O ( 1 ), KH2[Cr3O(OOCCH3)6(H2O)3][α‐SiW12O40]μ·μ11H2O ( 2 ), K2[Cr3O(OOCCH3)6 (H2O)3][α‐PW12O40]μ· 17H2O ( 3 ), Na[Cr3O(OOCCH3)6(H2O)3]2[α‐PMo12O40] · 11H2O ( 4 ), H5[Cr3O(OOCCH3)6(H2O)3] [α‐P2Mo18O62] · 10H2O ( 5 ) based on a polyoxometalate building block with a macrocation, have been synthesized in aqueous solution and structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermogravimetric analysis (TGA). The polyanions and macrocations stacked alternately through hydrogen bonds as well as electrostatic interactions to constitute a novel porous microstructure. In the crystal structures of 1 , 2 , and 3 , oppositely charged cluster ions stacked alternately to form one‐dimensional channels. Compound 4 exhibits an unique structure that six macrocation pillars packed along the a‐axis to form a straight 1D channel, in which accommodates a polyoxometalate pillar. In compound 5 , six α‐Dawson‐type polyoxometalate pillars stacked on top of each other along the a‐axis to form a straight 1D channel, which houses a macrocation pillar. The magnetic investigation on compounds 1 and 5 shows a typical antiferromagnetic interaction of the macrocation [Cr3O(OOCCH3)6(H2O)3]+, almost independent from the presence of polyoxometalate anions. 相似文献
The photocontrolled phase transitions and reflection behaviors of a smectic liquid crystal, 4‐octyl‐4′‐cyanobiphenyl (8CB), tuned by a chiral azobenzene, are systematically investigated. For the smectic 8CB doped with the chiral azobenzene (1R)‐(?)‐4‐n‐hexyl‐4′‐menthylazobenzene (ABE), the initial smectic phase can be switched to cholesteric and then to isotropic upon UV irradiation due to the trans‐to‐cis photoisomerization of ABE; however, no reflection band is observed. For the smectic 8CB doped with ABE and the chiral agent (S)‐(?)‐1,1′‐binaphthyl‐2,2′‐diol (BN), a reflection band located in the short‐wavelength infrared region is observed, which disappears after further UV irradiation. For the smectic 8CB doped with ABE and a chiral agent with higher helical twisting power, (S)‐2,2′‐methylendioxy‐1,1′‐binaphthalene (DBN), a phototunable system with cholesteric pitch short enough to reflect visible light is demonstrated. With a given concentration of the chiral dopant DBN, a reversible reflection color transition is realized tuned by the isomerization of azobenzene. The reverse phase transition from isotropic to cholesteric and then to smectic can be recovered upon visible irradiation. The photocontrolled phase transitions in smectic liquid crystals and the corresponding changes in reflection band switched by photoisomerization of azobenzene may provide impetus for their practical application in optical memories, displays, and switches. 相似文献
Crystal chemical data of high‐ (HT) and low‐temperature (LT) modifications of lithium argyrodites with the compositions Li7PCh6 (Ch=S, Se), Li6PCh5X (X=Cl, Br, I), Li6AsS5Br, and Li6AsCh5I (Ch=S, Se) based on single‐crystal, powder X‐ray (113 K<T<503 K) and neutron measurements (5 K<T<293 K) are presented. In the HT modifications, the Li atoms are strongly disordered over a fraction of the available tetrahedral holes, whereas in the LT modifications they occupy ordered crystallographic positions with a pronounced site preference that is analysed on a crystal chemical basis. The Ch/X partial structures remain nearly unchanged upon the reversible phase transitions. Crystal chemical and crystallographic relations between HT and LT modifications based on the Frank–Kasper model of tetrahedral close packing are discussed. X‐ray single‐crystal data for HT‐Li6PS5I show the electron density of the disordered Li to be smeared out over an extended region preferably inside face‐sharing double tetrahedra. A series of temperature‐dependent powder neutron data for Li6PS5I gives clear evidence for an HT/LT phase transition at ≈175 K with an ordering of the Li atoms in different polyhedra with coordination numbers between three and four. 相似文献
In ionic liquid crystals, the orthogonal smectic A phase is the most common phase whereas the tilted smectic C phase is rather rare. We present a new study with five novel ionic liquid crystals exhibiting both a smectic A as well as the rare smectic C phase. Two of them have a phenylpyrimidine core whereas the other three are imidazolium azobenzenes. Their phase sequences and tilt angles were studied by polarizing microscopy and their temperature‐dependent layer spacing as well as their translational and orientational order parameters were studied by X‐ray diffraction. The X‐ray tilt angles derived from X‐ray studies of the layer contraction and the optically measured tilt angles of the five ionic liquid crystals were compared to obtain their de Vries character. Four of our five mesogens turned out to show de Vries‐like behavior with a layer shrinkage that is far less than that expected for conventional materials. These materials can thus be considered as the first de Vries‐type materials among ionic liquid crystals. 相似文献
For polymer systems of two crystalline phases of one polymer component, each phase being consisted of polymer crystals of a finite size, we derive the crystalline‐crystalline phase transition relationship, i.e., generalized Gibbs‐Thomson equation. Its application combined with the crystalline‐liquid transition relationship (usual Gibbs‐Thomson equation) to the phase behavior of PT phase diagram of polyethylene (PE) is investigated, where the orthorhombic‐hexagonal phase transition of PE crystal under high pressure being involved. Comparison with experimental data leads to the estimates of the structural characteristics such as the ratios of (the end surface free energy of polymer crystal/crystal length) for the respective crystalline phases.
Molecular dynamics (MD) computer simulations have been carried out to study the structures, properties and crystal nucleation of nanoparticles with 453 Cu atoms. Structure information was analyzed from the MD simulations, while properties of nanoparticles of Cu453, such as melting point, freezing temperature, heat capacity and mo- lar volumes, have been estimated. The face center cubic (FCC) phase and icosahedron (Ih) phase were observed during the quenching process, and nucleation rates of crystallization to FCC crystal of Cu453 at temperatures of 650, 700, 750, and 800 K were analyzed. Both classical nucleation theory (CNT) and diffuse interface theory (DIT) were used to interpret our observed nucleation rates. The free energy and diffuse interface thickness between the liquid and the FCC crystal phases were estimated by the CNT and DIT respectively, and the results show that the DIT does not work properly to the system. 相似文献
We introduce a new approach to crystal‐packing analysis, based on the study of mutual recognition modes of entire molecules or of molecular moieties, rather than a search for selected atom–atom contacts, and on the study of crystal energy landscapes over many computer‐generated polymorphs, rather than a quest for the one most stable crystal structure. The computational tools for this task are a polymorph generator and the PIXEL density sums method for the calculation of intermolecular energies. From this perspective, the molecular recognition, crystal packing, and solid‐state phase behavior of caffeine and several methylxanthines (purine‐2,6‐diones) have been analyzed. Many possible crystal structures for anhydrous caffeine have been generated by computer simulation, and the most stable among them is a thermodynamic, ordered equivalent of the disordered phase, revealed by powder X‐ray crystallography. Molecular recognition energies between two caffeine molecules or between caffeine and water have been calculated, and the results reveal the largely predominant mode to be the stacking of parallel caffeine molecules, an intermediately favorable caffeine–water interaction, and many other equivalent energy minima for lateral interactions of much less stabilization power. This last indetermination helps to explain why caffeine does not crystallize easily into an ordered anhydrous structure. In contrast, the mono‐ and dimethylxanthines (theophylline, theobromine, and the 1,7‐isomer, for which we present a single‐crystal X‐ray study and a lattice energy landscape) do crystallize in anhydrous form thanks to the formation of lateral hydrogen bonds. 相似文献
Mechano‐induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano‐responsive molecular crystals exhibit crystal‐to‐amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) ( 1 ) and phenyl(3,5‐dimethylphenylisocyanide)gold(I) ( 2 ) complexes, which exhibit a mechano‐triggered single‐crystal‐to‐single‐crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano‐induced phase transitions have indicated that they undergo non‐epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash‐photolysis time‐resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time, even with repeated trials. The present studies provide us with a variety of hitherto unknown insights into mechano‐responsive molecular crystals, which help us to understand the phase transition behaviors upon mechanical stimulation and establish rational design principles. 相似文献
Small change in chemical structure of discotic liquid crystals can cause big difference in their mesomorphism. Replacing of the alkoxy peripheral chains of triphenylene by oxygen-atom containing ester chains would result in novel mesomorphism. A series of mixed tail triphenylenes containing propoxyacetyloxy and alkoxy, abbreviated as C18H6(OCnH2n+1)3(OCOCH2OC3H7)3, n=4-8, and hexa(propyloxyacetyloxy)triphenylene, C18H6(OCOCH2OC3H7)6 were synthesized. Thermal gravimetry analysis (TGA) of three discogens showed that they had good thermal stability till 350 ℃. The mesomorphism was investigated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The preliminary X-ray diffraction (XRD) results of one compound showed that it exhibited ordered hexagonal columnar (Colho) mesophase. These mixed tail triphenylene derivatives possessed much stable Colho mesophase and wider mesophase ranges than their hexaalkoxytriphenylene C18H6(OR)6 and hexaalkanoyloxytriphenylene C18H6(OCOR')6 analogues. The asymmetrical compounds 2,6,11-trialkoxy-3,7,10-tri(2-propyloxyacetyloxy)triphenylenes with n=5-8 displayed higher clearing points and wider temperature ranges than their symmetrical isomers 2,6,10-trialkoxy-3,7,11-tri(2-propyloxyacetyloxy)- triphenylenes, while C18H6(OCOCH2OC3H7)6 had the highest clearing point due to the β-oxygen-atom effect. 相似文献