首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Bacterial bioluminescence (BL) has been successfully applied in water‐quality monitoring and in vivo imaging. The attention of researchers has been attracted for several decades, but the mechanism of bacterial BL is still largely unknown due to the complexity of the multistep reaction process. Debates mainly focus on three key questions: How is the bioluminophore produced? What is the exact chemical form of the bioluminophore? How does the protein environment affect the light emission? Using quantum mechanics (QM), combined QM and molecular mechanics (QM/MM) and molecular dynamic (MD) calculations in gas‐phase, solvent and protein environments, the entire process of bacterial BL was investigated, from flavin reduction to light emission. This investigation revealed that: 1) the chemiluminescent decomposition of flavin peroxyhemiacetal does not occur through the intramolecular chemical initiated electron exchange luminescence (CIEEL) or the “dioxirane” mechanism, as suggested in the literature. Instead, the decomposition occurs according to the charge‐transfer initiated luminescence (CTIL) mechanism for the thermolysis of dioxetanone. 2) The first excited state of 4a‐hydroxy‐4a,5‐dihydroFMN (HFOH) was affirmed to be the bioluminophore of bacterial BL. This study provides details regarding the mechanism by which bacterial BL is produced and is helpful in understanding bacterial BL in general.  相似文献   

2.
The 4a-hydroperoxy-4a,5-dihydroFMN intermediate (II or HFOOH) of Vibrio harveyi luciferase is known to transform from a low quantum yield IIx to a high quantum yield (lambdamax 485 nm, uncorrected) IIy fluorescent species on exposure to excitation light. Similar results were observed with II prepared from the alphaH44A luciferase mutant, which is very weak in bioluminescence activity. Because of the rapid decay of the alphaH44A II, its true fluorescence was obscured by the more intense 520 nm fluorescence (uncorrected) from its decay product oxidized flavin mononucleotide (FMN). Potassium iodide (KI) at 0.2 M was effective in quenching the FMN fluorescence, leaving the 485 nm fluorescence of II from both the wild-type (WT) and alphaH44A luciferase readily detectable. For both II species, the luciferase-bound peroxyflavin was well shielded from KI quenching. KI also enhanced the decay rates of both the WT and alphaH44A II. For alphaH44A, the transformation of IIx to IIy can be induced by KI in the dark, and it is proposed to be a consequence of a luciferase conformational change. The WT II formed a bioluminescence-inactive complex with KI, resulting in two distinct decay time courses based on absorption changes and decreases of bioluminescence activity of II.  相似文献   

3.
Bacterial bioluminescence is initiated by the oxygenation reaction of reduced flavin mononucleotide in luciferase. This enzymatic oxygenation occurs in a wide range of biological processes including cellular redox metabolism, biocatalysis, biosynthesis and homeostasis. However, little is known about the mechanism of the enzymatic reaction between singlet reduced flavin and triplet oxygen. To explore the enigmatic oxygenation, for the first time, the reaction of reduced flavin anion with oxygen was studied in bacterial luciferase by a combined quantum mechanics and molecular mechanics method as well as molecular dynamics simulation. The calculated results demonstrate that the reaction proceeds via a proton-coupled electron transfer (PCET) pathway, and the essential αHis44 acts as a catalytic acid to provide the proton. The currently proposed PCET mechanism clearly describes the initial steps of bacterial bioluminescence, and could be suitable for the other flavin oxygenation reactions in enzymes.  相似文献   

4.
The activity of the bimodal fluorescent protein (bmFP) (lambda max, 488 and 517 nm) in the in vitro luciferase reaction has been studied. The bmFP that is produced by Photobacterium phosphoreum strain bmFP is a dimer of two homologous subunits binding four riboflavin 5'-phosphate (FMN)-myristate chromophores. The addition of bmFP to the luciferase reaction in the presence of the lumazine protein prevented the lumazine protein-induced blue shift in the emission band. The bmFP reduced electrochemically serves as a substrate in the luciferase reaction in the absence of added FMN, resulting in light emission with a single maximum at about 487 nm. The bmFP was also active in lieu of FMN in the NADH/FMN oxidoreductase (flavin reductase)-luciferase coupled bioluminescence reaction in the absence of added FMN. In the coupled reaction, bioluminescence with the isolated bmFP chromophore was weaker than that with the holo-bmFP. After bmFP was used in luciferase reactions initiated either chemically or electrochemically, it was still capable of emitting bimodal fluorescence.  相似文献   

5.
Abstract— The bioluminescent oxidation of reduced flavin mononucleotide by bacterial luciferase involves a long-lived flavoenzyme intermediate whose chromophore has been postulated to be the 4a-sub-stituted peroxy anion of reduced flavin. Reaction of long chain aldehyde with this intermediate results in light emission and formation of the corresponding acid. These experiments show that the typical aldehyde-dependent, luciferase-catalyzed bioluminescence can also be obtained starting with FMN and H2O2 instead of FMNH2 and O2. We postulate that the 4a-peroxy anion intermediate is formed directly by attack of H2O2 on FMN. The latter may be bound to luciferase. An enzyme bound intermediate is formed which by kinetic analysis, flavin specificity for luminescence, aldehyde dependence, and bioluminescent emission spectrum appears to be identical with the species generated by reaction of FMNH, and O2 with luciferase. The quantum yield of the H2O2-- and FMN-initiated biolumlnescence is low but can be enhanced by certain metal ions, which also stimulate a chemiluminescent reaction of oxidized flavin with H2O2. The peak of this chemiluminescence. however, appears to be at a shorter wavelength than that (490 nm) of the bioluminescence.  相似文献   

6.
The fluorescence behaviour of the flavins riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and lumiflavin in aqueous solution at pH 8 in the presence of the reducing agents β-mercaptoethanol (β-ME), dithiothreitol (DTT), and sodium nitrite (NaNO2) is studied under aerobic conditions. The fluorescence quantum yields and fluorescence lifetimes are determined as a function of the reducing agent concentration. For all three reducing agents diffusion controlled dynamic fluorescence quenching is observed which is thought to be due to photo-induced reductive electron transfer. For DTT additionally static fluorescence quenching occurs.  相似文献   

7.
Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin–luciferase one. However, the excited‐state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin–luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.  相似文献   

8.
The spectrophotometric and thermodynamic properties of molecular complexes of flavin mononucleotide (FMN) (riboflavin 5′-phosphate) with some β-carboline derivatives have been investigated in aqueous solution. The molecular associations have been examined by means of electronic absorption spectra, since in each a new charge-transfer band has been located, and also the variation of the fluorescence emission of FMN on the solutions has been observed. The formation constants for the molecular complexes were determined from absorption data using the Foster—Hammick—Wardley method. The quenching phenomenon observed in FMN fluorescence is related to the concentration of the β-carboline derivatives, allowing the calculation of the quenching constants for FMN-β-carboline complexes. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.  相似文献   

9.
Fluorescence Correlation Spectroscopy (FCS) was used to investigate the excited-state properties of flavins and flavoproteins in solution at the single molecule level. Flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and lipoamide dehydrogenase served as model systems in which the flavin cofactor is either free in solution (FMN, FAD) or enclosed in a protein environment as prosthetic group (lipoamide dehydrogenase). Parameters such as excitation light intensity, detection time and chromophore concentration were varied in order to optimize the autocorrelation traces. Only in experiments with very low light intensity ( < 10 kW/cm2), FMN and FAD displayed fluorescence properties equivalent to those found with conventional fluorescence detection methods. Due to the high triplet quantum yield of FMN, the system very soon starts to build up a population of non-fluorescent molecules, which is reflected in an apparent particle number far too low for the concentration used. Intramolecular photoreduction and subsequent photobleaching may well explain these observations. The effect of photoreduction was clearly shown by titration of FMN with ascorbic acid. While titration of FMN with the quenching agent potassium iodide at higher concentrations ( > 50 mM of I-) resulted in quenched flavin fluorescence as expected, low concentrations of potassium iodide led to a net enhancement of the de-excitation rate from the triplet state, thereby improving the fluorescence signal. FCS experiments on FAD exhibited an improved photostability of FAD as compared to FMN: As a result of stacking of the adenine and flavin moieties, FAD has a considerably lower triplet quantum yield. Correlation curves of lipoamide dehydrogenase yielded correct values for the diffusion time and number of molecules at low excitation intensities. However, experiments at higher light intensities revealed a process which can be explained by photophysical relaxation or photochemical destruction of the enzyme. As the time constant of the process induced at higher light intensities resembles the diffusion time constant of free flavin, photodestruction with the concomitant release of the cofactor offers a reasonable explanation.  相似文献   

10.
Firefly luciferase catalyzes a light‐emitting reaction in which an excited‐state product is formed. Both experimental and theoretical methodologies are used to study this system, and the reactions catalyzed by luciferase are relatively well characterized. However, the mechanism by which an excited‐state product is formed is still unknown. This Minireview deals with the current understanding of firefly bioluminescence and chemiluminescence. Thermal decomposition of simple 1,2‐dioxetanes is also discussed, due to their role in formation of the excited‐state bioluminophore.  相似文献   

11.
Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein‐bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED‐induced fluorescence with limit of detections (LODs 0.5–3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1–14 amol/cell) and FAD (2.2–17.0 amol/cell) were the predominant flavins, while FMN (0.46–3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools.  相似文献   

12.
The Bacillus subtilis protein YtvA, related to plant phototropins (phot), binds flavin mononucleotide (FMN) within the N‐terminal light, oxygen and voltage (LOV) domain. The blue light‐triggered photocycle of YtvA and phot involves the reversible formation of a covalent photoadduct between FMN and a cysteine (cys) residue. YtvA contains a single tryptophan, W103, localized on the LOV domain and conserved in all phot‐LOV domains. In this study, we show that the fluorescence parameters of W103 in YtvA‐LOV are markedly different from those observed in the full‐length YtvA. The fluorescence quantum yields are ca 0.03 and 0.08, respectively. In YtvA‐LOV, the maximum is redshifted (ca 345 vs 335 nm) and the average fluorescence lifetime shorter (2.7 vs 4.7 ns). These data indicate that W103 is located in a site of tight contact between the two domains of YtvA. In the FMN‐cys adduct, selective excitation of W103 at 295 nm results in minimal changes of the fluorescence parameters with respect to the dark state. On 280 nm excitation, however, there is a detectable decrease in the fluorescence emitted from tyrosines, with concomitant increase in W103 fluorescence. This effect is reversible in the dark and might arise from a light‐regulated energy transfer process from a yet unidentified tyrosine to W103.  相似文献   

13.
Conservation of energetically "expensive" metabolites is facilitated by enzymatic intra- and intermolecular channeling mechanisms. Our previous in vitro kinetic studies indicate that Vibrio harveyi reduced nicotinamide adenine dinucleotide phosphate-flavin mononucleotide (NADPH-FMN) oxidoreductase flavin reductase P (FRP) can transfer reduced riboflavin 5'-phosphate (FMNH2) to bacterial luciferase by direct channeling. However, no evidence has ever been reported for such an FMNH2 channeling between these two enzymes in vivo. The formation of a donor-acceptor enzyme complex, stable or transient, is mandatory for direct metabolite channeling between two enzymes regardless of details of the transfer mechanisms. In this study, we have obtained direct evidence of in vitro and in vivo FRP-luciferase complexes that are functionally active. The approach used is a variation of a technique previously described as Bioluminescence Resonance Energy Transfer. Yellow fluorescence protein (YFP) was fused to FRP to generate an active FRP-YFP fusion enzyme, which emits fluorescence peaking at 530 nm. In comparison with the normal 490 nm bioluminescence, an additional 530 nm component was observed in both the in vitro bioluminescence from the coupled reaction of luciferase and FRP-YFP and the in vivo bioluminescence from frp gene-negative V. harveyi cells that expressed FRP-YFP. This 530 nm bioluminescence component was not detected in a control in which a much higher level of YFP was present but not fused to FRP. Such findings indicate an energy transfer from the exited emitter of luciferase to the FRP component of the luciferase-FRP-YFP complex. Hence, the formation of an active complex of luciferase and FRP-YFP was detected both in vitro and in vivo.  相似文献   

14.
After more than one‐half century of investigations, the mechanism of bioluminescence from the FMNH2 assisted oxygen oxidation of an aliphatic aldehyde on bacterial luciferase continues to resist elucidation. There are many types of luciferase from species of bioluminescent bacteria originating from both marine and terrestrial habitats. The luciferases all have close sequence homology, and in vitro, a highly efficient light generation is obtained from these natural metabolites as substrates. Sufficient exothermicity equivalent to the energy of a blue photon is available in the chemical oxidation of the aldehyde to the corresponding carboxylic acid, and a luciferase‐bound FMNH‐OOH is a key player. A high energy species, the source of the exothermicity, is unknown except that it is not a luciferin cyclic peroxide, a dioxetanone, as identified in the pathway of the firefly and the marine bioluminescence systems. Besides these natural substrates, variable bioluminescence properties are found using other reactants such as flavin analogs or aldehydes, but results also depend on the luciferase type. Some rationalization of the mechanism has resulted from spatial structure determination, NMR of intermediates and dynamic optical spectroscopy. The overall light path appears to fall into the sensitized class of chemiluminescence mechanism, distinct from the dioxetanone types.  相似文献   

15.
Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S1) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT–S1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG0) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins.  相似文献   

16.
一种新型的亲水作用毛细管电色谱(HI-CEC)整体柱被应用于加压毛细管电色谱-激光诱导荧光检测(pCEC-LIF)联用法对核黄素类物质的分离分析。采用自组装的pCEC-LIF系统,实现了对痕量核黄素(RF)、黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的快速分析。在最优的分离检测条件下,3种化合物在8.0 min内完全分离,RF、FMN和FAD的检出限(LOD, S/N=3)分别为5.0×10-11 mol/L、8.0×10-10mol/L和2.5×10-9mol/L,测定线性范围可达3个数量级,精密度良好。方法简便、全分析时间短、灵敏度和选择性高,血清样品分析实验结果良好,可望进一步应用于体液及细胞中核黄素类物质的痕量检测  相似文献   

17.
Abstract— The effect of flavin structure variation upon the binding process of flavin to hen egg white riboflavin was studied using fluorescence methods for formylmethylflavin (FMF), riboflavin (RF) and flavomononucleotide (FMN).
Measurements of flavin fluorescence intensities (steady state and phase-sensitive) and lifetimes were performed in a variety of RBP concentrations and temperatures (4 to 40°C). No fluorescence of flavoproteins was detected, while the fluorescence of flavins was found to be quenched by RBP. The overall quenching process is dominated by the static quenching (about 88%) due to the flavoprotein complex formation in the ground state, presumably a charge transfer complex.  相似文献   

18.
Ribose‐containing coenzymes like flavin mononucleotide (FMN) can be considered to be fossils of a prebiotic RNA world in which RNA encoded genetic information and catalyzed chemical reactions. To investigate the catalytic and base‐pairing properties of FMN‐containing oligonucleotides, the two cyclic flavin β‐D ‐ribosides 3 and 4 derived from riboflavin 2 were synthesized (Schemes 1 and 2). These are both constitutionally strongly related to the nucleobase uridine and should be able to participate as catalytically competent and informational nucleobases in DNA, RNA, and p‐RNA. Ribofuranoside 3 was too unstable to be isolated, but ribopyranoside 4 had the required stability, β‐D ‐configuration, and anti‐conformation of the glycosidic bond.  相似文献   

19.
Raman spectra of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) in neutral aqueous solutions have been observed with excitations at 600.0, 363.8, 351.1, 337.1, and 257.3 nm. It has been suggested that, in general, an excitation in the absorption band of the second or the third longest waveleng (instead of the first) is an effective means for observing a resonance Raman spectrum of a chromophore without fluorescence disturbance.  相似文献   

20.
Flavins were extracted from sporangiophores of the lower fungus Phycomyces blakesleeanus and identified by HPLC with fluorescence detection. In the wild-type strain NRRL1555 they were found to be present at the following concentrations: riboflavin (5.5 x 10(-6) M), flavin mononucleotide (FMN) (4.0 x 10(-6) M) and flavin adenine dinucleotide (1.4 x 10(-6) M). The HPLC elution profiles of the wild type were compared to a set of behavioral mutants (genotype mad) with specific defects in their light-transduction pathway. The photoreceptor mutants C109 (madB), C111 (madB) and L1 (madC) had normal amounts of flavins. The most prominent changes were found in single mutants with a defective madA gene which contained about 25% of riboflavin and about 10% of FMN and FAD normally found in the wild type. A hypertropic mutant with a defective madH gene contained instead 80% of riboflavin and 120% of FMN and FAD. The double mutant L52 (madA madC) and the triple mutant L72 (madA madB madC) had normal amounts of FAD and FMN. This indicates that the madC mutation, which itself causes loss of light sensitivity and which affects the near-UV/blue-light receptor (Galland and Lipson, 1985, Photochem. Photobiol. 41, 331-335) functions as a restorer of the flavin content in a genetic madA background. The double mutant L51 (madA madB) had about 40% of FMN and FAD, suggesting that the madB mutation functions as a partial restorer of flavin content. The photogravitropic thresholds (450 nm) reported for the wild type and the madA and madH mutants were positively correlated to the endogeneous concentrations of FMN and FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号