首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2,3,5,6‐tetracyanopyridine (TCNPy) with V(CO)6 in CH2Cl2 forms new organic‐based magnets of V[TCNPy]x?z (CH2Cl2) (x=2, 3) composition. Analysis of the IR spectra suggests that the TCNPy is reduced and coordinated to VII sites through the nitriles. V[TCNPy]x order as ferrimagnets with 111 and 90 K Tc values for V[TCNPy]2 and V[TCNPy]3, respectively. Their respective remanent magnetizations and coercive fields are 1260 and 250 emuOe mol?1 and 9 and 6 Oe at 5 K, and they exhibit some spin‐glass behavior.  相似文献   

2.
The structure of 2,5‐bis­(methyl­thio)‐1,4‐benzo­quinone, C8H8O2S2, is composed of an essentially planar centrosymmetric benzo­quinone substituted with two methyl­thio groups. The important bond distances are S—Csp3 1.788 (2) and S—Csp2 1.724 (2) Å, and the two Csp2—Csp2 distances are 1.447 (3) and 1.504 (3) Å, which differ significantly. There are short S?S interactions of 3.430 (1) Å and Csp2—H?O‐type contacts forming a dimeric motif with graph set R22(8). The structure of 2‐methyl‐3‐(methyl­sulfonyl)­benzo­[b]­thio­phene, C10H10O2S2, is composed of an essentially planar benzo­thio­phene moiety substituted with methyl and methyl­sulfonyl groups. The mean values of the important bond distances are endocyclic S—Csp2 1.734 (3), S=O 1.434 (4) and C—Caromatic 1.389 (10) Å. The exocyclic S—Csp2 and S—Csp3 distances are 1.759 (4) and 1.763 (5) Å, respectively.  相似文献   

3.
Sehoon Park 《中国化学》2019,37(10):1057-1071
Transition metal‐catalyzed hydrosilylation is one of the most widely utilized reduction methods as an alternative to hydrogenation in academia and industry. One feature distinct from hydrogenation would be able to install sp3 C—Si bond(s) onto substrates skeleton via hydrosilylation of alkenes. Recently, B(C6F5)3 with hydrosilanes has been demonstrated to be an efficient, metal‐free catalyst system for the consecutive transformation of heteroatom‐containing substrates accompanied by the formation of sp3 C—Si bond(s), which has not been realized thus far under the transition metal‐catalyzed hydrosilylative conditions. In this review, I outline the B(C6F5)3‐mediated consecutive hydrosilylations of heteroarenes containing quinolines, pyridines, and furans, and of conjugated nitriles/imines to provide a new family of compounds having sp3 C—Si bond(s) with high chemo‐, regio‐ and/or stereoselectivities. The silylative cascade conversion of unactivated N‐aryl piperidines to sila‐N‐heterocycles catalyzed by B(C6F5)3 involving consecutive dehydrogenation, hydrosilylation, and intramolecular C(sp2)—H silylation, is presented in another section. Chemical selectivity and mechanism of the boron catalysis focused on the sp3 C—Si bond formation are highlighted.  相似文献   

4.
A chemoselective C(sp2)? F or C(sp3)? F bond activation of hexafluoropropylene (HFP) was achieved by adopting the proper combination of a Lewis acid co‐additive with a ligand which coordinates Pd0. The treatment of [(η2‐HFP)Pd(PCy3)2] with B(C6F5)3 allowed a chemoselective C(sp3)? F bond cleavage of HFP to give a unique cationic perfluoroallypalladium complex. In this complex, the coordination mode of the perfluoroallyl ligand was considered to be of the unique η2‐fashion.  相似文献   

5.
The hydro­thermal reaction of an aqueous solution of Cu(CH3COO)2·H2O, 1,2,4,5‐benzene­tetra­carboxylic acid and 4,4′‐bi­pyridine gave rise to the interesting title three‐dimensional polymer {[Cu6(btec)3(4,4′‐bpy)3(H2O)2]·2H2O}n (btec is 1,2,4,5‐benzene­tetra­carboxyl­ate, C10H2O84−, and 4,4′‐bpy is 4,4′‐bi­pyridine, C10H8N2), in which each btec ligand links six copper(II) cations into a lamellar [Cu6(btec)3(H2O)2]n sub­polymer framework. There are two distinct diamine units and two distinct carboxylate units, with one of each lying across an inversion centre.  相似文献   

6.
An intermolecular C(sp3)? H amination using a Pd0/PAr3 catalyst was developed. The reaction begins with oxidative addition of R2N? OBz to a Pd0/PAr3 catalyst and subsequent cleavage of a C(sp3)? H bond by the generated Pd? NR2 intermediate. The catalytic cycle proceeds without the need for external oxidants in a similar manner to the extensively studied palladium(0)‐catalyzed C? H arylation reactions. The electron‐deficient triarylphosphine ligand is crucial for this C(sp3)? H amination reaction to occur.  相似文献   

7.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

8.
The first oxidative C(sp3)−H/C(sp3)−H cross‐dehydrogenative coupling (CDC) reaction promoted by an internal oxidant is reported. This copper‐catalyzed CDC reaction of oxime acetates and trifluoromethyl ketones provides a simple and efficient approach towards 2‐trifluoromethyldihydropyrrol‐2‐ol derivatives in a highly diastereoselective manner by cascade C(sp3)−C(sp3) bond formation and cyclization. These products were further transformed into various significant and useful trifluoromethylated heterocyclic compounds, such as trifluoromethylated furan, thiophene, pyrrole, dihydropyridazine, and pyridazine derivatives. A trifluoromethylated analogue of an Aβ42 lowering agent was also synthesized smoothly. Preliminary mechanistic studies indicated that this reaction involves a copper(I)/copper(III) catalytic cycle with the oxime acetate acting as an internal oxidant.  相似文献   

9.
The metal‐organic complexes Co2(terpy)2(btec)·H2O 1 (terpy = 2,2′:6′,2″‐terpyridine, btec = 1,2,4,5‐benzenetetracarboxylate) was synthesized by hydrothermal synthesis method, using 1,2,4,5‐benzenetetracarbonitrile, terpy and CoAc2·4H2O. Single crystal X‐ray diffraction showed that each btec4– ligand links four CoII atoms and each CoII atom links to two btec4– ligands forming a 1D double‐chain structure. Furthermore, the chains pack together through short face–face π–π interactions forming a 3D supramolecular structure. Additionally, the magnetic measurements show antiferromagnetic interactions among metal ions for compound 1 .  相似文献   

10.
A stereocontrolled synthesis of all‐cis‐1,2,4,5‐ tetrafluoro‐3‐phenylcyclohexane is developed as the first functionalised example of this polar cyclohexane motif. The dipolar nature of the ring, arising due to two 1,3‐diaxial C?F bonds, is revealed in the solid‐state (X‐ray) structure. The orthogonal conformation of the aryl and cyclohexyl rings in all‐cis‐1,2,4,5‐tetrafluoro‐3‐phenylcyclohexane, and in an ortho‐nitro derivative, result in intramolecular 1hJHF and 2hJCF NMR couplings relayed through hydrogen bonding. The aryl group of all‐cis‐1,2,4,5‐tetrafluoro‐3‐phenylcyclohexane is elaborated in different ways to demonstrate the versatility of this compound for delivering the motif to a range of molecular building blocks.  相似文献   

11.
A metal coordination polymer, {[Mn2Mo(CN)8(C12H8N6)(CH3CN)2(H2O)2]·2H2O}n, has been synthesized by the reaction of Mn(ClO4)2·6H2O with 3,6‐bis(pyridin‐2‐yl)‐1,2,4,5‐tetrazine (bptz) and (Bu3N)3[Mo(CN)8] at room temperature. The polymer was characterized by IR spectroscopy, elemental analysis and X‐ray diffraction, and the magnetic properties were also investigated. The X‐ray diffraction analysis reveals that the compound is a new three‐dimensional coordination polymer with a PtS‐type network. Magnetic investigation shows antiferromagnetic coupling between adjacent Mn2+ cations.  相似文献   

12.
The Cδ?H amination of unactivated, secondary C?H bonds to form a broad range of functionalized pyrrolidines has been developed by a triiodide (I3?)‐mediated strategy. By in situ 1) oxidation of sodium iodide and 2) sequestration of the transiently generated iodine (I2) as I3?, this approach precludes undesired I2‐mediated decomposition which can otherwise limit synthetic utility to only weak C(sp3)?H bonds. The mechanism of this triiodide‐mediated cyclization of unbiased, secondary C(sp3)?H bonds, by either thermal or photolytic initiation, is supported by NMR and UV/Vis data, as well as intercepted intermediates.  相似文献   

13.
A new α‐C(sp3)? H alkynylation of unactivated tertiary aliphatic amines with 1‐iodoalkynes as radical alkynylating reagents in the presence of [Au2(μ‐dppm)2]2+ in sunlight provides propargylic amines. Based on mechanistic studies, a C? C coupling of an α‐aminoalkyl radical and an alkynyl radical is proposed for the C(sp3)? C(sp) bond formation. The mild, convenient, efficient, and highly selective C(sp3)? H alkynylation reaction shows excellent regioselectivity and good functional‐group compatibility. A scale‐up to gram quantities is possible with sunlight used as a clean and sustainable energy source.  相似文献   

14.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

15.
Metal Complexes of Functionalized Sulfur‐containing Ligands. XVII Synthesis of S ‐Oxides of 1,2,4‐Trithiolane, 1,2,4,5‐Tetrathiane as well as 1,2,3,5,6‐Pentathiepane, and their Reactions with (Ph3P)2Pt(η2‐C2H4). X‐Ray Structure Analysis of 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolane 1‐oxide 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolan ( 1 ) was oxidized using m‐chloroperbenzoic acid to give, selectively, the 3,3,5,5‐tetraphenyl‐1,2,4‐trithiolane 1‐oxide ( 2 ). 2 was characterized structurally. The reaction of octamethyl tetrathiadispiro[3.2.3.2]dodecane‐2,9‐dione ( 3 ) with trifluoroperacetic acid at –50 °C yielded the corresponding 5‐oxide 4 . Oxidation of octamethyl pentathiadispiro[3.3.3.2]tridecane‐2,9‐dione ( 5 ) with m‐chloroperbenzoic acid at 0 °C gave the 12‐oxide 6 . Treatment of 2 with two equivalents of (Ph3P)2Pt(η2‐C2H4) ( 7 ) afforded a mixture (1 : 1) of the complexes (Ph3P)2PtSCPh2S ( 8 ) and (Ph3P)2Pt(η2‐Ph2C=S=O) ( 9 ), respectively.  相似文献   

16.
Diamondoids, sp3‐hybridized nanometer‐sized diamond‐like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3‐C‐based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon‐based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25–100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p‐type sensing properties are achieved from devices based on primary phosphine–diamantanol, in which high specific area (ca. 140 m2 g?1) and channel nanoporosity derive from H‐bonding.  相似文献   

17.
A set of (3,3′)‐bis(1‐Ph‐2‐R‐1H‐2,1‐benzazaborole) compounds, in which R=tBu (Bab‐tBu)2 , R=Dipp (Bab‐Dipp)2 or R=tBu and Dipp (Bab‐Dipp)(Bab‐tBu) , was synthesized and fully characterized using 1H, 11B, 13C, and 15N NMR spectroscopy as well as single‐crystal X‐ray diffraction analysis. The central HC(sp3)?C(sp3)H bond with restricted rotation at the junction of both 1H‐2,1‐benzazaborole rings displayed an intriguing reactivity. It was demonstrated that this bond is easily mesolytically cleaved using alkali metals to form the respective aromatic 1Ph‐2R‐1H‐2,1‐benzazaborolyl anions M+(THF) n (Bab‐tBu)? (M=Li, Na, K) and K+(THF) n (Bab‐Dipp)? . Furthermore, the central HC(sp3)?C(sp3)H bond of bis(1H‐2,1‐benzazaborole)s is also homolytically cleaved either by heating or photochemical means, giving corresponding 1Ph‐2R‐1H‐2,1‐benzazaborolyl radicals (Bab‐tBu). and (Bab‐Dipp)., which rapidly self‐terminate. Nevertheless, their formation was unambiguously established by NMR analysis of the reaction mixtures containing products of the self‐termination of the radicals after heating or irradiation. (Bab‐Dipp). radical was also characterized using EPR spectroscopy. Importantly, it turned out that the essentially non‐polarized HC(sp3)?C(sp3)H bond in (Bab‐tBu)2 is also cleaved heterolytically with 2 equiv of MeLi, giving the mixture of Li+(SOL) n (Bab‐tBu)? (SOL=THF or Et2O) and lithium methyl‐substituted borate complex Li+(SOL) n (Bab‐tBu‐Me)? in a diastereoselective fashion.  相似文献   

18.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

19.
Transition‐metal‐free synthesis of α‐aryl esters and nitriles using arylboronic acids with α‐aminoesters and α‐aminoacetonitriles, respectively, as the starting materials has been developed. The reaction represents a rare case of converting C(sp3)? N bonds into C(sp3)? C(sp2) bonds. The reaction conditions are mild, demonstrate good functional‐group tolerance, and can be scaled up.  相似文献   

20.
Rollover cyclometalation involves bidentate heterocyclic donors, unusually acting as cyclometalated ligands. The resulting products, possessing a free donor atom, react differently from the classical cyclometalated complexes. Taking advantage of a “rollover”/“retro‐rollover” reaction sequence, a succession of oxidative addition and reductive elimination in a series of platinum(II) complexes [Pt(N,C)(Me)(PR3)] resulted in a rare C(sp2)?C(sp3) bond formation to give the bidentate nitrogen ligands 3‐methyl‐2,2′‐bipyridine, 3,6‐dimethyl‐2,2′‐bipyridine, and 3‐methyl‐2‐(2′‐pyridyl)‐quinoline, which were isolated and characterized. The nature of the phosphane PR3 is essential to the outcome of the reaction. This route constitutes a new method for the activation and functionalization of C?H bond in the C(3) position of bidentate heterocyclic compounds, a position usually difficult to functionalize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号