首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(9):2512-2515
Ru and Co are highly dispersed on the surface of TiO2 nanoparticles with an easy coprecipitation method to fabricate a novel Ru-based catalyst (Ru/Co-TiO2). The fabricated Ru/Co-TiO2 catalyst exhibits superior catalytic performance for promoting NaBH4 hydrolysis in alkaline medium, showing an impressive hydrogen generation rate per gram Ru as high as 172 L min−1 gRu-1, which is better than most of recently reported Ru-based catalysts. In addition, the fabricated Ru/Co-TiO2 catalyst also shows excellent durability in cycle use, with only 2.9% activity loss after being used for 5 cycles. These advantages make the developed Ru/Co-TiO2 catalyst a potential choice for promoting hydrogen generation from NaBH4 hydrolysis.  相似文献   

2.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   

3.
Abstract

Tunisian industrial phosphoric acid H3PO4 was supported on silica gel SiO2 (SIPA) to catalyze the hydrolysis reaction of aqueous alkaline sodium borohydride (NaBH4). The SiO2 was produced from purified quartz sand using alkali fusion-acidification chemical process. The BET surface area results indicate that the prepared silica gel could reach a specific surface area up to 585 m2/g. The addition of PO3H2 functional groups resulted in an increase of surface acidity of SiO2 catalyst as shown by FT-IR and DTA-DTG spectra. The total acidity of SIPA catalyst was determined by titration to be 2.8?mmol H+/g. SEM/EDS maps reveal the distribution of heavy metals on the silica surface. The effect of supported PO3H2 functional groups and heavy metals on the NaBH4 hydrolysis reaction was studied for different ratios of SIPA catalyst to NaBH4. The sample 12SIPA/NaBH4 leads to a very high hydrogen generation rate (up to 90%). The activation energy of hydrogen generation by NaBH4 hydrolysis was 25.7?kJ mol?1.  相似文献   

4.
There is a demand to develop molecular catalysts promoting the hydrogen evolution reaction (HER) with a high catalytic rate and a high tolerance to various inhibitors, such as CO and O2. Herein we report a cobalt catalyst with a penta‐dentate macrocyclic ligand ( 1‐Co ), which exhibits a fast catalytic rate (TOF=2210 s?1) in aqueous pH 7.0 phosphate buffer solution, in which proton transfer from a dihydrogen phosphate anion (H2PO4?) plays a key role in catalytic enhancement. The electrocatalyst exhibits a high tolerance to inhibitors, displaying over 90 % retention of its activity under either CO or air atmosphere. Its high tolerance to CO is concluded to arise from the kinetically labile character of undesirable CO‐bound species due to the geometrical frustration posed by the ligand, which prevents an ideal trigonal bipyramid being established.  相似文献   

5.
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒, 研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响. 透射电子显微镜(TEM)的结果表明, 所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性; 当Pd/Co的理论原子比为1/9时, 双金属纳米颗粒的催化活性最高可达15570 mol·mol-1·h-1 (文中纳米颗粒的催化活性均为每摩尔Pd的活性). 密度泛函理论(DFT)的计算结果表明, Pd原子与Co原子之间发生电荷转移, 使得Pd原子带负电而Co原子带正电, 荷电的Pd和Co原子进而成为催化反应的活性中心. 所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性, 即使重复使用5次后, 该催化剂仍具有较高的催化活性, 且使用后的纳米颗粒催化剂也没有出现团聚现象. 双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ·mol-1.  相似文献   

6.
以纳米碳纤维(CNFs)为基体材料,采用化学镀法在CNFs表面沉积了Ni-Co-P催化剂。研究了催化剂用量,硼氢化钠、氢氧化钠浓度,温度等对碱性硼氢化钠溶液水解释氢的影响。电感耦合等离子体原子发射光谱法(ICP-AES)测试得出负载型Ni-Co-P催化剂含镍13.30%(质量分数,下同)、钴82.25%、磷4.45%。硼氢化钠水解释氢实验结果表明,产氢速率与催化剂用量呈线性关系。当温度为45 ℃、催化剂浓度为7.5 g/L、氢氧化钠浓度为5%、硼氢化钠浓度为2.5%时,氢气释放速率达到最大值18.044 L/(g·min)。通过对负载型催化剂Ni-Co-P/CNFs催化碱性硼氢化钠溶液释放氢气动力学研究表明,该催化剂的活化能Ea为51.57 kJ/mol。  相似文献   

7.
A micromotor‐based strategy for energy generation, utilizing the conversion of liquid‐phase hydrogen to usable hydrogen gas (H2), is described. The new motion‐based H2‐generation concept relies on the movement of Pt‐black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt‐black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen–oxygen fuel cell car by an on‐board motion‐based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on‐site energy generation for powering external devices or meeting growing demands on the energy grid.  相似文献   

8.
The development of transition‐metal‐oxides (TMOs)‐based bifunctional catalysts toward efficient overall water splitting through delicate control of composition and structure is a challenging task. Herein, the rational design and controllable fabrication of unique heterostructured inter‐doped ruthenium–cobalt oxide [(Ru–Co)Ox] hollow nanosheet arrays on carbon cloth is reported. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, the (Ru–Co)Ox nanoarrays exhibited outstanding performance as a bifunctional catalyst. Particularly, the catalyst showed a remarkable hydrogen evolution reaction (HER) activity with an overpotential of 44.1 mV at 10 mA cm?2 and a small Tafel slope of 23.5 mV dec?1, as well as an excellent oxygen evolution reaction (OER) activity with an overpotential of 171.2 mV at 10 mA cm?2. As a result, a very low cell voltage of 1.488 V was needed at 10 mA cm?2 for alkaline overall water splitting.  相似文献   

9.
Highly active and stable electrocatalysts for hydrogen generation from neutral‐pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co‐HNP), which serve as an electrocatalyst for hydrogen generation from neutral‐pH water. An electrode composed of Co‐HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm?2 at overpotentials of ?85 mV and ?237 mV, respectively. The Co‐HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm?2, indicating the superior activity and stability of Co‐HNP as electrocatalyst.  相似文献   

10.
We report a unique strategy to obtain the bifunctional heterogeneous catalyst TBB‐Bpy@Salen‐Co (TBB=1,2,4,5‐tetrakis(bromomethyl)benzene, Bpy=4,4’‐bipyridine, Salen‐Co=N,N’‐bis({4‐dimethylamino}salicylidene)ethylenediamino cobalt(III) acetate) by combining a cross‐linked ionic polymer with a CoIII–salen Schiff base. The catalyst showed extra high activity for CO2 fixation under mild, solvent‐free reaction conditions with no requirement for a co‐catalyst. The synthesized catalyst possessed distinctive spherical structural features, abundant halogen Br? anions with good leaving group ability, and accessible Lewis acidic Co metal centers. These unique features, together with the synergistic role of the Co and Br? functional sites, allowed TBB‐Bpy@Salen‐Co to exhibit enhanced catalytic conversion of CO2 into cyclic carbonates relative to the corresponding monofunctional analogues. This catalyst can be easily recovered and recycled five times without significant leaching of Co or loss of activity. Moreover, based on our experimental results and previous work, a synergistic cycloaddition reaction mechanism was proposed.  相似文献   

11.
A method for cobalt‐catalyzed, aminoquinoline‐ and picolinamide‐directed C(sp2)? H bond alkenylation by alkynes was developed. The method shows excellent functional‐group tolerance and both internal and terminal alkynes are competent substrates for the coupling. The reaction employs a Co(OAc)2?4 H2O catalyst, Mn(OAc)2 co‐catalyst, and oxygen (from air) as a terminal oxidant.  相似文献   

12.
Thin film of amorphous tungsten‐doped cobalt oxide (W:CoO) was successfully grown on a conducting electrode via an electrochemical oxidation process employing a [Co(WS4)2]2? deposition bath. The W:CoO catalyst displays an attractive performance for the oxygen evolution reaction in an alkaline solution. In an NaOH solution of pH 13, W:CoO operates with a moderate onset overpotential of 230 mV and requires 320 mV overpotential to generate a catalytic current density of 10 mA cm?2. A low Tafel slope of 45 mV decade?1 was determined, indicating a rapid O2‐evolving kinetics. The as‐prepared W:CoO belongs to the best cobalt oxide‐based catalysts ever reported for the oxygen evolution (OER) reaction.  相似文献   

13.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   

14.
The bis(arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐NO2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N′‐2,6‐bis{di(4‐fluorophenyl)methyl}‐4‐nitrophenyl group, have been synthesized by two successive condensation reactions from 2,6‐diacetylpyridine. Their subsequent treatment with anhydrous cobalt (II) chloride gave the corresponding N,N,N′‐CoCl2 chelates, Co1 – Co5 , in excellent yield. All five complexes have been characterized by 1H/19F NMR and IR spectroscopy as well as by elemental analysis. In addition, the molecular structures of Co1 and Co3 have been determined and help to emphasize the differences in steric properties imposed by the inequivalent N‐aryl groups; distorted square pyramidal geometries are adopted by each complex. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), precatalyts Co1 – Co5 collectively exhibited very high activities for ethylene polymerization with 2,6‐dimethyl‐substituted Co1 the most active (up to 1.1 × 107 g (PE) mol?1 (Co) h?1); the MAO systems were generally more productive. Linear polyethylenes of exceptionally high molecular weight (Mw up to 1.3 × 106 g mol?1) were obtained in all cases with the range in dispersities exhibited using MAO as co‐catalyst noticeably narrower than with MMAO [Mw/Mn: 3.55–4.77 ( Co1 – Co5 /MAO) vs. 2.85–12.85 ( Co1 – Co5 /MMAO)]. Significantly, the molecular weights of the polymers generated using this class of cobalt catalyst are higher than any literature values reported to date using related N,N,N‐bis (arylimino)pyridine‐cobalt catalysts.  相似文献   

15.
The kinetics of the formation of the titanium‐peroxide [TiO2+2] complex from the reaction of Ti(IV)OSO4 with hydrogen peroxide and the hydrolysis of hydroxymethyl hydroperoxide (HMHP) were examined to determine whether Ti(IV)OSO4 could be used to distinguish between hydrogen peroxide and HMHP in mixed solutions. Stopped‐flow analysis coupled to UV‐vis spectroscopy was used to examine the reaction kinetics at various temperatures. The molar absorptivity (ε) of the [TiO2+2] complex was found to be 679.5 ± 20.8 L mol?1 cm?1 at 405 nm. The reaction between hydrogen peroxide and Ti(IV)OSO4 was first order with respect to both Ti(IV)OSO4 and H2O2 with a rate constant of 5.70 ± 0.18 × 104 M?1 s?1 at 25°C, and an activation energy, Ea = 40.5 ± 1.9 kJ mol?1. The rate constant for the hydrolysis of HMHP was 4.3 × 10?3 s?1 at pH 8.5. Since the rate of complex formation between Ti(IV)OSO4 and hydrogen peroxide is much faster than the rate of hydrolysis of HMHP, the Ti(IV)OSO4 reaction coupled to time‐dependent UV‐vis spectroscopic measurements can be used to distinguish between hydrogen peroxide and HMHP in solution. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 457–461, 2007  相似文献   

16.
Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal–semiconductor junction principles is presented. With metallic MoB, the introduction of n‐type semiconductive g‐C3N4 induces a vigorous charge transfer across the MoB/g‐C3N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46 mV dec?1 and a high exchange current density of 17 μA cm?2, which is far better than that of pristine MoB. First‐principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation.  相似文献   

17.
With various contents, Mn was introduced into carbon nanotubes (CNTs) supported cobalt catalysts and the obtained Mn‐Co/CNTs catalysts were investigated for CO hydrogenation to light alkenes and characterized by N2 adsorption, X‐ray diffraction (XRD), X‐ray photoelectron spectra (XPS), H2 temperature programmed reduction (TPR), CO temperature programmed desorption (TPD) and transmission electron microscope (TEM). The results indicate that the addition of a small amount of Mn (0.3 wt%) to CNTs‐supported Co catalyst significantly increased the selectivity of C2–C4 olefins and decreased the selectivity of CH4. However, with further addition of Mn to the cobalt catalysts, the CH4 selectivity decreased obviously along with the increase of the C5+ selectivity. Compared with the unpromoted catalysts, the Mn‐promoted cobalt catalysts increased the C2?–C4?/C20–C40 molar ratio.  相似文献   

18.
WANG  Guiling  ZHANG  Weicai  CAO  Dianxue  LIU  Jincheng  WANG  Xunying  ZHANG  Sen  SUN  Kening 《中国化学》2009,27(11):2166-2170
The effects of hot alkaline treatment and Fe2O3 modification of hydrogen storage alloy on the electrocatalytic activity for oxidation of borohydride have been investigated using linear sweep voltammetry. The performance of borohydride electrochemical oxidation was significantly influenced by the hot alkaline treatment and Fe2O3 modification of the hydrogen storage alloy. The results showed that the current density of the Fe2O3‐modified hot alkaline‐treated hydrogen storage alloy electrode containing 5 wt% Fe2O3 reached 125 mA·cm?2 in 0.10 mol·L?1 NaBH4 and 2 mol·L?1 NaOH solution at ?0.55 V vs. saturated Ag/AgCl, KCl electrode.  相似文献   

19.
Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm−2, and a low Tafel slope of 44 mV dec−1 in an alkaline medium, which is the best OER performance among reported Co‐based electrocatalysts to date. Moreover, in‐depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high‐efficiency OER electrocatalysts.  相似文献   

20.
The unsymmetrical bis (arylimino)pyridines, 2‐[CMeN{2,6‐{(4‐FC6H4)2CH}2–4‐t‐BuC6H2}]‐6‐(CMeNAr)C5H3N (Ar = 2,6‐Me2C6H3 L1 , 2,6‐Et2C6H3 L2 , 2,6‐i‐Pr2C6H3 L3 , 2,4,6‐Me3C6H2 L4 , 2,6‐Et2–4‐MeC6H2 L5 ), each containing one N‐aryl group bedecked with ortho‐substituted fluorobenzhydryl groups, have been employed in the preparation of the corresponding five‐coordinate cobalt (II) chelates, LCoCl2 ( Co1 – Co5 ); the symmetrical comparator [2,6‐{CMeN(2,6‐(4‐FC6H4)2CH)2–4‐t‐BuC6H2}2C5H3N]CoCl2 (Co6) is also reported. All cobaltous complexes are paramagnetic and have been characterized by 1H/19F NMR spectroscopy, FT‐IR spectroscopy and elemental analysis. The molecular structures of Co3 and Co6 highlight the different degrees of steric protection given to the metal center by the particular N‐aryl group combination. Depending on the aluminoxane co‐catalyst employed to activate the cobalt precatalyst, distinct variations in thermal stability and activity of the catalyst towards ethylene polymerization were exhibited. In particular with MAO, the resultant catalysts reached their optimal performance at 70 °C delivering high activities of up to 10.1 × 106 g PE (mol of Co)?1 h?1 with Co1  >  Co4  >  Co2  >  Co5  >  Co3 >>  Co6 . On the other hand, using MMAO, the catalysts operate most effectively at 30 °C but are by comparison less productive. In general, the polyethylenes were highly linear, narrowly disperse and displayed a wide range of molecular weights [Mw range: 18.5–58.7 kg mol?1 (MAO); 206.1–352.5 kg mol?1 (MMAO)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号