首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH value in the gel-sol system for the preparation of uniform anatase TiO2 nanoparticles, as a decisive factor for controlling the size and shape of the final product, was found to be significantly changed during the formation process of the anatase TiO2 particles from a condensed Ti(OH)4 gel. The dramatic evolution of pH with the progress of the synthetic process has clearly been explained in terms of the adsorption and desorption of a hydroxide ion (OH-) ora proton (H+) on the solids transforming with time. The adsorption and desorption of OH- or H+ were enhanced by the presence of an inert electrolyte such as NaClO4, as explained by its shielding effect on the electrical interactions between the electrically charged precipitates and free OH- and H+ ions. The electrolyte also hampered the phase transformation of Ti(OH)4 precipitate to anatase TiO2. This effect of electrolytes was explained in terms of the inhibited nucleation of anatase TiO2 by enhanced adsorption of OH- ions toTiO2 embryos. The points of zero charge (PZC) of the amorphous Ti(OH)4 precipitate and the anatase TiO2 particles at 25 degrees C were obtained from the change in pH associated with the adsorption and desorption of OH- or H+, i.e., 4.6 for Ti(OH)4 precipitate and 6.0 for anatase TiO2 in the presence of 0.1 mol dm(-3) NaClO4. The PZCof the Ti(OH)4 precipitate measured at 25 degrees C after additional aging at 100 degrees C for 30 min was shifted to 4.1, owing to the promoted adsorption of OH-.  相似文献   

2.
Anatase nanoparticles modified by sulfate groups were synthesized using hydrothermal method. The particles were controlled to large sizes by simply adjusting the amount of H2O2, in which HOO^- ions replaced the surface sulfate groups and reduced the steric effect to promote the grain growth. The size-induced microstructural changes of the as-prepared nanoparticles were characterized using powder XRD, FT-IR, TG. and UV-vis analyses. The sulfate groups existed on anatase surface in unidentate and bidentate coordination forms. With the particle size reduction, bandgap energies of the as-prepared anatase nanoparticles decreased, and the desorption temperature of sulfate groups shifted towards lower temperatures.  相似文献   

3.
以经典的金属有机骨架(MOFs)材料ZIF-8为吸附剂,研究尺寸效应对铀吸附性能的影响。 通过3种方法合成不同粒径的ZIF-8,利用扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)、表面积与孔隙度分析仪等对其进行了表征,测试了相同条件下不同尺寸的ZIF-8对硝酸铀酰溶液中U(VI)吸附,分别对其吸附过程的动力学和吸附等温线进行了考察,并测试了材料的可重复利用性。 结果表明,成功制备了高结晶性、高纯度的ZIF-8,产物形貌呈菱形十二面体,颗粒均匀,粒径分别为约50 nm、150 nm及2 μm;3种ZIF-8具有单一均匀的微孔结构和与粒径高度相关的比表面积;不同尺寸的ZIF-8均能快速吸附溶液中的U(VI),在室温pH=3下,在70 min左右时即可吸附初始质量浓度为200 mg/L的U(VI)溶液中90%以上U(VI);其中较小尺寸(约50 nm)的ZIF-8吸附性能最好,单位质量ZIF-8吸附U(VI)的饱和吸附量达到520.26 mg/g;ZIF-8对U的吸附动力学上符合二级动力学方程,吸附等温线符合Langmuir模型,说明ZIF-8对U(VI)的捕获属于化学单层吸附;经过4个吸附-解吸循环后,3种尺寸的ZIF-8均依然保持了70%以上的去除率。  相似文献   

4.
Cd2+和Ni2+在粉煤灰上的吸附特性   总被引:2,自引:1,他引:1  
考察了粉煤灰对Cd2+和Ni2+的单组分吸附和双组分吸附性能。结果表明,粉煤灰可有效吸附水溶液中的Cd2+和Ni2+,去除率随pH升高而增加。吸附约60min后趋于平衡。粉煤灰对Ni2+的吸附容量高于Cd2+。单组分吸附平衡符合Freundlich模型和Redlich Peterson (R P)模型。双组分吸附时,Ni2+和Cd2+之间存在明显的竞争吸附效应;随干扰离子浓度升高,竞争吸附效应增强。不同模型拟合结果表明,双组分吸附平衡符合Freundlich竞争吸附模型。脱附实验表明,Cd2+比Ni2+易于脱附;0.1mol/L HCl、0.1mol/L HNO3 和0.05mol/L H2SO4的脱附效果接近,对Cd2+脱附率>60%,对Ni2+脱附率>35%。  相似文献   

5.
本文采用真空-质谱技术研究了紫外线照射下分子氧在锐钛矿型TiO2表面的吸附和脱附机理。氧光助吸附后,锐钛矿表面成为活化表面。活化表面的O2-(分子氧在锐钛矿表面的吸附态)在1.33×10-3Pa的真空中,在能量大于锐钛矿禁带宽度2.9eV的紫外线照射下成为分子氧脱附,氧脱附后的表面在无紫外线照射的氧气氛中对分子氧有吸附作用,该O2-饱和吸附量大于相同氧压下紫外线照射下O2的饱和吸附量。在氧压和光强度相同的条件下,O2-吸附量与表面羟基化程度呈线性关系。  相似文献   

6.
The adsorption of two dextrin-based polymers, a regular wheat dextrin (TY) and a carboxymethyl-substituted (CM) dextrin, onto an anatase TiO(2) particle film has been studied using in situ attenuated total reflection (ATR) FTIR spectroscopy. Infrared spectra of the polymer solutions and the polymer adsorbed at the anatase surface were acquired for two solution conditions: pH 3 and pH 9; below and above the isoelectric point (IEP) of anatase, respectively. Comparison of the polymer solution spectra and the adsorbed layer spectra highlighted a number of spectral differences that were attributed to involvement of the carboxyl group of CM Dextrin interacting with the anatase surface directly and the adsorption of oxidized dextrin chains in the case of regular dextrin (TY) at high pH. The adsorption/desorption kinetics were determined by monitoring spectral peaks of the pyranose ring of both polymers. Adsorption equilibrium was not established for Dextrin TY for many hours, whereas CM Dextrin reached equilibrium in its adsorption within 60 min. The extent of desorption of Dextrin TY (observed by flowing a background electrolyte dextrin-free solution) was extensive at both pH values, which reflects the poor affinity and binding of the polymer on anatase. In contrast, CM Dextrin underwent almost no desorption, indicating a high affinity between the carboxyl groups of the polymer and the anatase surface.  相似文献   

7.
Insertion reactions are of key importance for Li ion and hydrogen storage materials and energy storage devices. The particle size dependence of insertion reactions has been investigated for lithiated anatase TiO2, revealing progressively increasing Li capacity and Li-ion solubility for decreasing particle sizes, strongly deviating from the expected Li-rich and Li-poor phase separation as occurs in the bulk material. The phase diagram alters significantly, changing the materials properties already at sizes as large as 40 nm. A rationale is found in the surface strain that occurs between the different intercalated phases, which becomes energetically too costly in small particles. In particular the observed particle size-induced solid solution behavior is expected to have fundamental and practical implications for two-phase lithium or hydrogen insertion reactions.  相似文献   

8.
Formation of monolayers of spherical particles in processes with reversible adsorption from mixtures of large and small particles was simulated in computer experiments. Computer program was based on an algorithm that took into account random sequential adsorption, desorption and lateral diffusion of adsorbed particles (RSA–DLD model). Computer experiments were performed for systems with rate constants of particle adsorption at least 103 times higher than rate constants of desorption. In processes with very fast adsorption and slow desorption, formation of monolayer can be divided into two stages. During the first stage, the total surface coverage (the coverage with particles of both types) increases very fast and becomes very close to that at equilibrium. During the second stage, the total coverage changes very slowly and the system approaches equilibrium mainly by the replacement of large particles with the small ones. A simple kinetic model for evolution of the monolayer composition during the second stage has been proposed. Kinetic equations related to this model allow the determination of large particles’ desorption rate constants on the basis of changes in the surface concentrations of adsorbed large and small microspheres. The validity of the model has been tested comparing large particles’ desorption rate constants values that had been used for simulations with values of the corresponding rate constants determined using analytical equations, with a view to analysing the simulation results. To cite this article: S. Slomkowski et al., C. R. Chimie 6 (2003).  相似文献   

9.
The aim of this study is to prepare supermacroporous cryogels embedded with Cu(2+)-attached sporopollenin particles (Cu(2+)-ASP) having large surface area for high protein adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Cu(2+)-ASP was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA). Firstly, Cu(2+) ions were attached to sporopollenin particles (SP), then the supermacroporous PHEMA cryogel with embedded Cu(2+)-ASP was produced by free radical polymerization using N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Embedded particles (10 mg) in PHEMA-based cryogel column were used in the adsorption/desorption of HSA from aqueous solutions. Optimum conditions of adsorption experiments were performed at pH 8.0 phosphate buffer, with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of HSA adsorption from aqueous solution was very high (677.4 mg/g SP) with initial concentration 6 mg/mL. It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Cu(2+)-ASP in PHEMA cryogel without significant loss of adsorption capacity.  相似文献   

10.
The adsorption and reaction in supercritical CO2 of the titanate coupling reagent NDZ-201 on the surfaces of seven metal oxide particles, SiO2, Al2O3, ZrO2, TiO2 (anatase), TiO2 (rutile), Fe2O3, and Fe3O4, was investigated. FTIR and TG analysis indicated that the adsorption and reaction were different on different particle surfaces. On SiO2 and Al2O3 particles, there was a chemical reaction of the titanate coupling reagent on the surfaces. On the surfaces of ZrO2 and TiO2 (anatase) particles, there were two kinds of adsorption, weak and strong adsorption. On the surfaces of TiO2 (rutile), Fe2O3, and Fe3O4 particles, there was only weak adsorption. The acidity or basicity of the OH groups on the particle surface was the key factor that determined if a surface reaction occurred. When the OH groups were acidic, the titanate coupling reagent reacted with these, but otherwise, there was no reaction. The surface density of OH groups on the original particles and the amount of titanate coupling reagent adsorbed and reacted were estimated from TG analysis. The reactivity of the surface OH groups of Al2O3 particles was higher than that of the SiO2 particles.  相似文献   

11.
氮和碳共掺杂TiO2纳米晶的制备及可见光催化性能   总被引:1,自引:0,他引:1  
以钛酸四丁酯为钛源, 冰醋酸为抑制剂, 超细铵盐为固体载体, 采用新型溶胶-凝胶法制备了氮和碳共掺杂TiO2纳米晶(N-C-TiO2) 光催化剂. 透射电子显微镜(TEM)结果表明, N-C-TiO2样品颗粒均匀, 尺寸细小, 且分散性好; 热失重分析(TGA)、 X射线粉末衍射(XRD)和X射线光电子能谱(XPS)研究结果表明, 复合干凝胶经低温热处理, 使铵盐载体分解、 挥发去除, 样品为单一的锐钛矿相, N和C原子扩散进入晶格结点或间隙位置, 与TiO2化学键结合; 氮气等温吸附-脱附结果表明, 样品比表面积高达356 m2/g, 孔体积为0.27 mL/g. 以氙灯为可见光光源, 罗丹明B水溶液为模拟污染物, P25为参比催化剂, 在辐射强度为100 mW/cm2的可见光照射条件下, N-C-TiO2具有很高的光催化活性, 其可见光催化活性明显高于P25.  相似文献   

12.
A mathematical model of particle size distribution in continuous emulsion polymerization which accounts for the free radical desorption from polymer particles is presented. The desorption rate is based on the diffusion theories which suggest the rate coefficient should be inversely proportional to the surface area of the polymer particles. The number density and total particle number are estimated by our model.

The average number of radicals per particle approaches Smith-Ewart case II In the range of large particle sizes. A means for predicting the nature of average desorption rate is proposed, and it seems to be influenced by concentrations of emulsifier and initiator, and residence times as well  相似文献   

13.
Mechanism of adsorption of Zn(II) and Cd(II) ions at the TiO2 (anatase)/electrolyte interface has been studied by different experimental techniques (potentiometric titration, microelectrophoresis and adsorption measurements of zinc and cadmium species). It was found that the point of zero charge (pzc) of anatase (pH =5.8) was shifted to the lower pH values with increasing concentrations of Zn(II) or Cd(Il) ions. The surface charge of anatase in the presence of Zn(II) and Cd(II) for pH > pHpzc was higher than that observed for original sample in NaClO4 solutions only. Due to low coverage of anatase surface with Zn(II) or Cd(II) species almost no shift of the isoelectric point (iep) or charge reversal were observed. Adsorption density vs. pH plots for both Zn(Il) or Cd(II) showed, typical for multivalent ions, presence of “adsorption edge.”  相似文献   

14.
In this study, the adsorption of two organic acids, oxalic acid and adipic acid, on TiO2 nanoparticles was investigated at room temperature, 298 K. Solution-phase measurements were used to quantify the extent and reversibility of oxalic acid and adipic acid adsorption on anatase nanoparticles with primary particle sizes of 5 and 32 nm. At all pH values considered, there were minimal differences in measured Langmuir adsorption constants, K ads, or surface-area-normalized maximum adsorbate-surface coverages, Gamma max, between 5 and 32 nm particles. Although macroscopic differences in the reactivity of these organic acids as a function of nanoparticle size were not observed, ATR-FTIR spectroscopy showed some distinct differences in the absorption bands present for oxalic acid adsorbed on 5 nm particles compared to 32 nm particles, suggesting different adsorption sites or a different distribution of adsorption sites for oxalic acid on the 5 nm particles. These results illustrate that molecular-level differences in nanoparticle reactivity can still exist even when macroscopic differences are not observed from solution phase measurements. Our results also allowed the impact of nanoparticle aggregation on acid uptake to be assessed. It is clear that particle aggregation occurs at all pH values and that organic acids can destabilize nanoparticle suspensions. Furthermore, 5 nm particles can form larger aggregates compared to 32 nm particles under the same conditions of pH and solid concentrations. The relative reactivity of 5 and 32 nm particles as determined from Langmuir adsorption parameters did not appear to vary greatly despite differences that occur in nanoparticle aggregation for these two different size nanoparticles. Although this potentially suggests that aggregation does not impact organic acid uptake on anatase particles, these data clearly show that challenges remain in assessing the available surface area for adsorption in nanoparticle aqueous suspensions because of aggregation.  相似文献   

15.
TiO2-SiO2 composites, with high specific surface area (up to 308 m2/g), large pore volume, and narrow distribution with average pore sizes of 3.2 nm, have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. Calcium sulfate, a microsolubility salt, plays an important role in the formation of pores in this porous TiO2/silica composite. The microstructure and chemical composition of composite were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometer (XPS) and N2 adsorption and desorption analysis. The as-prepared porous titanium dioxide-silicon dioxide composites with high specific surface area and well-crystallized anatase contents were used as an efficient photocatalyst.  相似文献   

16.
The adsorption of polydisperse, interacting nanoparticles is studied experimentally and discussed in terms of the random sequential adsorption model. Two kinds of polystyrene particles with different size variation (41+/-6 and 107+/-5 nm) were used in adsorption experiments at or close to saturation. The dried monolayer particle films were analyzed with scanning electron microscopy. Selective adsorption of smaller particles resulted in altered size distributions on the surface compared to that in solution. Varying the ionic strength was seen to influence the effective polydispersity of the particles. With increasing salt concentration there was a relative increase in the adsorption of smaller particles, resulting in a large shift toward smaller particle sizes in the size distribution on the surface. Polydispersity gave a slight increase in coverage at high salt concentrations and a decrease in the ordering of the particles on the surface. Copyright 2001 Academic Press.  相似文献   

17.
JSC‐1a (a simulated lunar dust sample) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x‐ray (EDX) spectroscopy, and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and in addition by collecting isothermal adsorption transients. Blind experiments on the silica support have been performed as well. JSC‐1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg, as characterized in detail in prior studies, for example, at NASA. The particle sizes span the range from a few micrometers up to 100 µm. At small exposures, H2O TDS is characterized by broad (100–450) K structures; at large exposures, distinct TDS peaks emerge, which are assigned to amorphous solid water (ASW) (145 K) and crystalline ice (CI) (165 K). Water dissociates on JSC‐1a at small exposures but not on the bare silica support. Coadsorption TDS data (alkane–water mixtures) indicate that rather porous condensed ice layers form at large exposures, with the mineral particles acting most likely as nucleation sites. At thermal impact energies, the initial adsorption probability amounts to 0.92 ± 0.05. It is evident that the drop‐and‐dry technique, developed in studies about nanoparticles/tubes, can be extended to obtain samples for surface science studies based on powders consisting of particles with rather large diameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Porous anatase is attractive because of its notable photo-electronic properties. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60°C and the solvent was extracted (aerogel). Mesoporous TiO2 consisting of anatase nano-particles, about 5 nm in diameter, have been obtained. Thermal evolution of the microstructure of the aerogel was evaluated by TGA-DTA, N2 adsorption, TEM and XRD, and discussed in comparison with that of the corresponding xerogel. The diffraction peaks of anatase were found for the as-extracted gel while the xerogel dried at 90°C was amorphous. After calcination at 600°C, the average pore size of the aerogel, about 20 nm in diameter, was 4 times larger than that of the xerogel, and the pore volume, about 0.35 cm3 g−1, and the specific surface area, about 60 m2 g−1, were 2 times larger than those of the xerogel. XRD peaks of rutile have been found after calcination at 600°C. The particle sizes of anatase and rutile are about 13 and 25 nm in diameter, respectively. The surface morphology of TiO2 nano-particles has been discussed in terms of their surface fractal dimensions estimated from the N2 gas adsorption isotherms.  相似文献   

19.
Uniform anatase-type TiO(2) nanoparticles were prepared by the gel-sol process from a condensed Ti(OH)(4) gel preformed by the hydrolysis of a Ti-triethanolamine (TEOA) complex. The particle size of the anatase TiO(2) was increased from ca. 5 to 30 nm with pH increasing from 0.6 to 12 by aging the Ti(OH)(4) gel at 140 degrees C for 72 h, while the yield of the anatase TiO(2), 100% below pH 9.6, started to decrease from pH 10, to 67% at pH 11.5 and only 9% at pH 12.2. These results reveal a significant reduction of the nucleation rate of the anatase TiO(2) with increasing pH, as is explained by the reduction of the concentration of a precursor complex, Ti(OH)(3)(+), and the adsorption of hydroxide ion onto the embryos of TiO(2). Triethanolamine appeared to enhance the pH effect on the nucleation rate of anatase TiO(2) particles by adsorption onto their embryos, leading to the wide range of the size control. Triethanolamine was also found to act as a shape controller of the anatase TiO(2) particles for yielding ellipsoidal particles from Ti(OH)(4) gel at a relatively high pH above 11. The particle size was also controlled by seeding of anatase TiO(2). Moreover, the seeding experiment suggested that the rate-determining step of the gel-sol process was not the dissolution of the hydroxide gel, but the deposition of the monomeric precursor from the solution phase.  相似文献   

20.
Chitosan-coated magnetic nanoparticles (CCMNPs), modified with a biodegradable and eco-friendly biologic reagent, alpha-ketoglutaric acid (alpha-KA), was used as a magnetic nanoadsorbent to remove toxic Cu(2+) ions from aqueous solution. The prepared magnetic nanoadsorbents were characterized by FTIR, TEM, VSM, XRD, and EDS. Factors influencing the adsorption of Cu(2+), e.g., initial metal concentration, initial pH, contact time and adsorbent concentration were investigated. TEM images show that the dimension of multidispersed circular particles is about 30 nm and no marked aggregation occurs. VSM patterns indicate superparamagnetic properties of magnetic nanoadsorbents. EDS pictures confirm the presence of the Cu(2+) on the surface of magnetic nanoadsorbents. Equilibrium studies show that Cu(2+) adsorption data follow Langmuir model. The maximum adsorption capacity (q(max)) for Cu(2+) ions was estimated to be 96.15 mg/g, which was higher than that of pure CCMNPs. The desorption data show no significant desorption hysteresis occurred. In addition, the high stability and recovery capacity of the chitosan-coated magnetic nanoparticles modified with alpha-ketoglutaric acid (alpha-KA-CCMNPs) suggest that these novel magnetic nanoadsorbents have potential applications for removing Cu(2+) from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号