首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The purpose of this paper is to prove that for a large set of absolute Hausdorff and quasi-Hausdorff methods the condition $$\sum\limits_{k = 1}^\infty {\left| {\lambda _n a_n - \lambda _{n - 1} a_{n - 1} } \right|< } \infty $$ is a Tauberian condition, i.e., its fulfillment together with the absolute summability of \(\sum\limits_{n = 0}^\infty {a_n } \) tos implies that \(\sum\limits_{n = 0}^\infty {\left| {a_n } \right|}< \infty \) and \(\sum\limits_{n = 0}^\infty {a_n } = s.\) a n =s.  相似文献   

5.
6.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

7.
Let p={pv} be a fixed sequence of complex numbers. Define \(p_n : = \mathop \Sigma \limits_{\nu = o}^n p_\nu \) and suppose that \(p_{m_k } \ne o\) for a subsequence M={mk} of nonnegative integers. The matrix A=(αkv) with the elements $$\alpha _{k\nu } = p_\nu /p_{m_k } if o \leqslant \nu \leqslant m_k ,\alpha _{k\nu } = oif \nu > m_k $$ generates a summability method (R,p,M) which is a refinement of the well known Riesz methods. The (R,p,M) methods have been introduced in [4]. In the present paper we are concerned with the summability of the geometric series \(\mathop \Sigma \limits_{\nu = o}^n z^\nu \) by (R,p,M) methods. We prove the following theorem. Suppose G is a simply connected domain with \(\{ z:|z|< 1\} \subset G,1 \varepsilon | G \) . Then there exists a universal, regular (R,p,M) method having the following properties: (1) \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M) to \(\tfrac{1}{{1 - z}}\) on G. (2) For every compact set B?¯Gc which has a connected complement and for every function f which is continuous on B and analytic in its interior there exists a subsequence M(B,f) of M such that \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is uniformly summable (R,p,M(B,f)) to f(z) on B. (3) For every open set U?Gc which has simply connected components in ? and for every function f which is analytic on U there exists a subsequence M(U,f) of M such that \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M(U,f)) to f(z) on U.  相似文献   

8.
Let \(0< \lambda \kappa \uparrow \infty ,\sum\nolimits_{\kappa = 1}^\infty {\lambda _\kappa ^{ - 1}< \infty } \) , and let γ be an analytic arc. For the Dirichlet polynomial \(P(z) = \sum\nolimits_1^n {a_k e^{\lambda _k .z} } \) , in angle \(E - \pi /2 + \varphi _0< \arg [ - (z - \alpha )]< \pi /2 + \varphi _0 ,0< \varphi _0< \pi /2,\operatorname{Re} \alpha< \beta = \mathop {\max }\limits_{t \in \gamma } \operatorname{Re} t\) we obtain the estimate $|P(z)|< A\mathop {\max }\limits_{t \in \gamma } |P(t)|$ where A depends only on angle E and {λk}. When γ is a segment, an estimate was obtained by L. Schwartz.  相似文献   

9.
Основной целью работ ы является обобщение одного результата Кратца и Т раутнера [4], известного для одном ерных функциональны х рядов, на кратные ряды. Этот рез ультат касается суммируемо сти функционального ряда почти всюду при слабых пред положениях. В частности, он примен им к суммируемости по Чезаро и по Риссу. Мы рассматриваемd-кр атный ряд $$\mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x), \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d }^2< \infty $$ и предполагается, что функции \(f_{k_1 ,...,k_d } (x)\) интегрируе мы по пространству с полож ительной мерой и имеют почти вс юду ограниченные фун кции Лебега для метода суммирова ния Т. Метод Т определяетсяd-мерной матрицей \(T = \{ a_{m_1 ,...,m_d ;k_1 ,...,k_d } \} \) сл едующим образом: $$t_{m_1 ,...,m_d } (x) = \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty a_{m_1 ,...,m_d ;k_1 ,...,k_d } c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x).$$ Эти средние существу ют, поскольку мы предп олагаем, что \(a_{m_1 ,...,m_d ;k_1 ,...,k_d } = 0\) ,если max(k 1,...,k d) достаточно вели к (в зависимости, конеч но, отm 1,...,m d). При некоторых дополнительных усло виях на матрицуТ (см. (7)– (9) в разделе 3) устанавлива ется почти всюду регулярная схо димость средних \(t_{m_1 ,...,m_d } (x) \user2{} \user2{(}m_1 \user2{,}...\user2{,}m_d \user2{)} \to \infty \) . Как вспомогательный результат, в работе об общается теорема Алексича [1] о сх одимости почти всюду некоторы х подпоследовательн остей частных сумм функцио нального ряда.  相似文献   

10.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

11.
Let \(S_ \propto ( \propto \geqq 0)\) be the set of normalized (see (1.2)) functions f holomorphic in D:|z|<1 with \(f''(z)/f'(z) = 0((1 - \left| z \right|^2 )^{ - \propto } )\) , and let be the set of normalized (see (1.6)) functions f meromorphic in D with the Schwarzian derivative \(\left\{ {f,z} \right\} = 0((1 - \left| z \right|^2 )^{ - \propto } )\) . We shall show that some topological properties of \(S_ \propto\) and , and of subsets of them, follow from those of the weighted H space \(H_ \propto ^\infty\) , consisting of functions f holomorphic in D with \(f(z) = 0((1 - \left| z \right|^2 )^{ - \propto } )\) , and those of subsets of \(H_ \propto ^\infty\) . The set S1 is denoted by X in [3] and [4].  相似文献   

12.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

13.
LetD be a simply connected domain, the boundary of which is a closed Jordan curveγ; \(\mathfrak{M} = \left\{ {z_{k, n} } \right\}\) , 0≦kn; n=1, 2, 3, ..., a matrix of interpolation knots, \(\mathfrak{M} \subset \Gamma ; A_c \left( {\bar D} \right)\) the space of the functions that are analytic inD and continuous on \(\bar D; \left\{ {L_n \left( {\mathfrak{M}; f, z} \right)} \right\}\) the sequence of the Lagrange interpolation polynomials. We say that a matrix \(\mathfrak{M}\) satisfies condition (B m ), \(\mathfrak{M}\) ∈(B m ), if for some positive integerm there exist a setB m containingm points and a sequencen p p=1 of integers such that the series \(\mathop \Sigma \limits_{p = 1}^\infty \frac{1}{{n_p }}\) diverges and for all pairsn i ,n j ∈{n p } p=1 the set \(\left( {\bigcap\limits_{k = 0}^{n_i } {z_{k, n_i } } } \right)\bigcap {\left( {\bigcup\limits_{k = 0}^{n_j } {z_{k, n_j } } } \right)} \) is contained inB m . The main result reads as follows. {Let D=z: ¦z¦ \(\Gamma = \partial \bar D\) and let the matrix \(\mathfrak{M} \subset \Gamma \) satisfy condition (Bm). Then there exists a function \(f \in A_c \left( {\bar D} \right)\) such that the relation $$\mathop {\lim \sup }\limits_{n \to \infty } \left| {L_n \left( {\mathfrak{M}, f, z} \right)} \right| = \infty $$ holds almost everywhere on γ.  相似文献   

14.
Let {ξk}, kz ...?1,0,1, ..., be a sequence of independent identically distributed random variables with . Let {Ck} be a numerical sequence such that \(\Sigma _{ - \infty }^\infty c_k^2< \infty \) Let $$X_n = \sum\limits_{ - \infty }^\infty {c_{k - n} \xi _k } , S_n = \sum\limits_1^n {X_k } $$ . This article investigates the limit behavior of the distributions of functionals of the following type: $$\mathcal{V}_n = \tfrac{1}{n}\sum\limits_1^n {h\left( {S_k } \right)} $$ , where h is a bounded function on R1.  相似文献   

15.
В работе изучается сл едующая задача. Пусть заданы числа 0<α≦1 и β<α. При каки х условиях на строго во зрастающую последов ательность натуральных чисел {n k } k t8 =1 для всех 2π-периодических функ ций \(f(x) \sim \sum\limits_{v = - \infty }^\infty {c_v e^{ivx} } \) , принадлежащих к лассу Lip α, равномерно пох будет выполнено неравенство $$\sum\limits_{k = 1}^\infty {|\sum\limits_{n_k \leqq |v|< n_{k + 1} } {c_v e^{ivx} } |n_k^\beta< \infty ?} $$ .  相似文献   

16.
17.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

18.
The class \(B_{\varrho _1 } \) is introduced and thoroughly studied in the paper. By definition,H \(B_{\varrho _1 } \) if there exist sequences {А n } and {μ n }, ¦μ n ¦ ↑ ∞ (depending onH(?)) such that $$\mathop {\lim \sup }\limits_{t \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho _1 } }} = H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{k = 1}^\infty \left| {A_k E_\varrho \left( {\lambda _k z} \right)} \right|,$$ whereE ? (z) is a Mittag—Leffler function and? 1>?>1/2. The significance of the class \(B_{\varrho _1 } \) is confirmed by the following theorem. For each functionH \(B_{\varrho _1 } \) there exists a sequence {λ n } with the following property: every entire functionF(z) of order? 1 with the growth indicatorh F (?)< <H(?) can be expanded into the series $$F\left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty a_n E_\varrho \left( {\lambda _n z} \right),$$ furthermore, $$\mathop {\lim sup}\limits_{r \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho 1} }}< H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty \left| {a_n E_\varrho \left( {\lambda _n z} \right)} \right|.$$ The coefficientsa n are explicitly defined. The results were previously announced by the author inDokl. AN SSSR,264 (1982), 1313–1315.  相似文献   

19.
Let \(f(z): = \sum\nolimits_{j = 0}^\infty {a_j z^J } \) be entire, witha j≠0,j large enough, \(\lim _{J \to \infty } a_{j + 1} /a_J = 0\) , and, for someqC, \(q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q\) asj→∞. LetE mn(f; r) denote the error in best rational approximation off in the uniform norm on |z‖≤r, by rational functions of type (m, n). We study the behavior ofE mn(f; r) asm and/orn→∞. For example, whenq above is not a root of unity, or whenq is a root of unity, butq m has a certain asymptotic expansion asm→∞, then we show that, for each fixed positive integern, ,m→∞. In particular, this applies to the Mittag-Leffler functions \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /\Gamma (1 + j/\lambda )} \) and to \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /(j!)^{I/\lambda } } \) , λ>0. When |q‖<1, we also handle the diagonal case, showing, for example, that ,n→∞. Under mild additional conditions, we show that we can replace 1+0(1) n by 1+0(1). In all cases we show that the poles of the best approximants approach ∞ asm→∞.  相似文献   

20.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号