首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
许东华  姚卫国 《高分子科学》2016,34(10):1290-1300
The cure kinetics for two-component silicone rubber formed by addition reaction was studied by the rheological method. The influence of reaction temperature (T) on the cure kinetics was explored in detail. It was observed that the data of gel time (t gel, i.e. the time when the reaction reaches the gel point) or a specific reaction time (t nc) (defined as the reaction time before which time the influence of confinement of network on the diffusion of reaction components can be neglected) versus T obey certain functional relationship, which was well explained by the cure kinetics model of thermoset network. The cure kinetics for the two-component silicone rubber can be well fitted by the Kamal-Sourour(autocatalyst) reaction model rather than Kissinger model. When the reaction time was before or equal to t nc, the reaction order obtained by the Kamal-Sourour reaction model was 2, which was consistent with the reaction order inferred from the two components chemical reaction when the diffusion of reaction components was not influenced by the formed cross-linked polymer network. When the reaction time was larger than t nc, such as to the end of reaction (t e), the influence of confinement of network on the diffusion of reaction components cannot be neglected, and the reaction order obtained by the Kamal-Sourour reaction model was larger than 2. It was concluded that the confinement effect of network had a greater influence on the cure kinetics of the silicone rubber. The reaction rate constants (k r) under different temperatures were also determined by Kamal-Sourour reaction model. The activation energy (E) for the two-component silicone rubber was also calculated from the results of lnt gel, lnt nc, and lnk r versus 1/T, respectively. The three values of E were close, which indicated that above analyses were self-consistent.  相似文献   

2.
In the present study, the reaction kinetics of polybutylene terephthalate (PBT) and epoxy system was studied by a novel rheological method. The reaction process was determined by rheological test and the results showed that there were three stages in the reaction between PBT and epoxy, which were reaction-controlling stage (stage I), reaction-stagnation stage (stage II) and diffusion-controlling stage (stage III). In addition, the stage I was selected to study the reaction kinetics by the rheological method. The results showed that the reaction between PBT and epoxy could be classified as a pseudo-first-order reaction due to the excessive amount of epoxy group. Furthermore, the reaction apparent activation energy of the stage I determined by the rheological method was 143 kJ/mol. To confirm these results, the reaction kinetics was also evaluated by the endgroup determination method, and the results showed that the reaction could also be classified as a pseudo-first-order reaction. Moreover, the apparent activation energy of the reaction was 116 kJ/mol, which was similar to that of the value obtained by the rheological method.  相似文献   

3.
The kinetics of the thermal rearrangement 4‐ethyl‐3,5‐diphenyl‐4H‐1,2,4‐triazoles, 1 , to the corresponding 1‐ethyl‐3,5‐diphenyl‐1‐alkyl‐1H‐1,2,4‐triazoles, 2 , was studied in 15‐Crown‐5 and octadecane at 330 °C. The reaction was very slow in octadecane but proceed well in 15‐Crown‐5. The reaction order for the reaction was not constant but changed from an initial second order rate law towards a first order rate law as the reaction progressed. This was confirmed by the concentration dependent reaction order, nc, which was larger than the time dependent rate law, nt. The rationale for the observation was, that at high substrate concentrations the reaction order was second order while at lower concentrations a competing solvent assisted reaction plays an increasing important role. The data were in agreement with a mechanism in which the neutral 4‐alkyl‐triazoles in an intermolecular nucleophilic displacement reaction form a triazolium triazolate, which in a subsequent nucleophilic reaction gives the observed product.  相似文献   

4.
The reaction of epoxides with dichlorocarbene generated in an emulsifying system was investigated. The products were the corresponding dichlorocyclopropane derivatives. The reaction of cis- and trans-β-methylstyrene oxides showed the reaction was completely stereospecific. Styrene oxide gave the corresponding dichlorocyclopropane and styrene, where the concentration of the latter was kept in the nearly stationary state during the reaction. Further the competitive reaction of α- and β-methylstyrene oxide showed that introduction of an additional Me group at the α-position accelerated the reaction only 12 times. From these observations the reaction was concluded to involve the two step process, namely, the deoxygenation process and dichlorocyclopropanation process, both of which were stereospecific and practically concerted.  相似文献   

5.
In this study, the recovery of algal oil from Enteromorpha intestinalis based on an acidic–hydrothermal reaction was investigated. Overall, the algal oil yield after the acidic–hydrothermal reaction was increased under the conditions of high reaction temperature, high catalyst concentration, and long reaction time within the tested ranges. Significantly, catalyst concentration, compared with reaction temperature and time, less affected algal oil recovery. The optimal acidic–hydrothermal reaction conditions for production of algal oil from E. intestinalis were as follows—200 °C reaction temperature, 2.92 % catalyst concentration, 54 min reaction time. Under these conditions, an 18.6 % algal oil yield was obtained. By increasing the combined severity factor, the algae oil recovery yield linearly increased.  相似文献   

6.
A protocol for the aerobic oxidation of cumene to cumene hydroperoxide (CHP) catalyzed by metalloporphyrins is reported herein. Typically, the reaction was performed in an intermittent mode under an atmospheric pressure of air and below 130°C. Several important reaction parameters, such as the structure and concentration of metalloporphyrin, the air flow rate, and the temperature, were carefully studied. Analysis of the data obtained showed that the reaction was remarkably improved by the addition of metalloporphyrins, in terms of both the yield and formation rate of CHP while high selectivity was maintained. It was discovered that 4 or 5 h was the optimal reaction time when the reaction was catalyzed by monomanganese-porphyrin ((p-Cl)TPPMnCl) (7.20 × 10?5 mol/l) at 120°C with the air flow rate being 600 ml/min. From the results, we also found that higher concentration of (p-Cl)TPPMnCl, longer reaction time and higher reaction temperature were all detrimental to the production of CHP from cumene. Studies of the reaction kinetics revealed that the activation energy of the reaction (E) is around 38.9 × 104 kJ mol?1. The low apparent activation energy of the reaction could explain why the rate of cumene oxidation to CHP in the presence of metalloporphyrins was much faster than that of the non-catalyzed oxidation.  相似文献   

7.
The bulk phase kinetics of an epoxy (DGEBA) /amine (DDS) thermoset have been studied using DSC, FTIR, and 13C-NMR. In the absence of catalyst, the reaction was found to involve a main exothermic reaction between epoxide and amine hydrogen and a side reaction between tertiary amine formed in the main reaction and epoxide. The main reaction was exothermic while the side reaction had no discernable exotherm. Etherification did not occur to any significant extent. Since only the main reaction is exothermic, DSC was very useful for studying the main reaction kinetics. FTIR was used for determining whether epoxide and amine hydrogen were consumed at different rates as a way of following the side reaction. An IR band previously unused by other investigators was used to monitor the amine hydrogen concentration. NMR confirmed the above mechanism by identifying the formation of a quaternary ammonium ion/alkoxide ion pair as a reaction product of tertiary amine and epoxide. This mechanism has been successfully fit to a rate law valid over the entire extent of reaction. The rate constant for the epoxy/amine addition reaction was found to depend on hydroxide concentration (extent), reaction temperature, and glass transition temperature and included contributions from uncatalyzed and autocatalyzed parts. The side reaction (quaternary ammonium ion formation) formed weak bonds which did not affect the overall system Tg. Both reactions were second order. The rate constants for the main reaction first increase with increasing extent due to autocatalysis by hydroxide before decreasing due to the diffusion limit caused by gelation and vitrification. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The reactions of N-phenylhydroxylamine in the presence of dry hydrogen chloride to form azoxybenzene, aniline, 2-chloroaniline and 4-chloroaniline were studied. The molar ratio of the azoxybenzene and aniline obtained was very close to one. A similar reaction was also observed for 2-methyl- and 4-methyl-N-phenylhydroxylamine. A reasonable explanation is that N-phenylhydroxylamine undergoes a self oxidation reduction reaction to give aniline and nitrosobenzene, and the latter subsequently reacts with N-phenylhydroxylamine to give azoxybenzene. The reaction of N-phenylhydroxylamine, catalyzed by trifluoroacetic acid to yield azoxybenzene, was previously studied by Okamoto et al. and was suspected to undergo a similar reaction. We repeated the reaction and evidence for the same self oxidation reduction reaction was found. A mechanism involving the anilenium ion is proposed to account for this reaction.  相似文献   

9.
研究了无溶剂条件下纳米Cu2O催化二苯甲烷二氨基甲酸苯酯(MDPC)热分解制备二苯甲烷二异氰酸酯(MDI),考察了纳米Cu2O的制备条件与反应条件对MDPC热分解反应性能的影响.结果表明,水解法制备的纳米Cu2O在Ar中于300℃焙烧2h,其催化性能最佳;最佳的反应条件为Cu2O用量为原料总重的0.06%,反应温度220℃,反应压力0.6kPa,反应时间12min,此时MDPC转化率达到99.8%,MDI选择性86.2%.  相似文献   

10.
An investigation of the reaction of mercury atoms with molecular chlorine was performed in heated reaction vessels constructed of Inconel, quartz, stainless steel and Teflon-coated stainless steel. The reaction was shown to proceed as a surface catalyzed reaction stoichiometrically producing (HgCl2)n.  相似文献   

11.
Metal salts such as lithium chloride were found to facilitate significantly the reaction of carboxylic acids and amines promoted by triphenyl phosphite, and the reaction was applied successfully to the direct polycondensation reaction of dicarboxylic acids and diamines and of p-aminobenzoic acid. Among metal salts tested, lithium chloride was most effective to the reaction; the chloride was involved catalytically in the reaction, its addition of about twice equivalent to triphenyl phosphite giving the most favorable results. Triphenyl phosphite was most effective, whereas diphenyl phosphite was less effective, and alkyl esters gave no polymers. The reaction was also markedly affected by solvents, the most favorable results being given in N-methylpyrrolidone (NMP). Various polyamides of high molecular weight were obtained in quantitative yield.  相似文献   

12.
This article investigates the role of solvation effects in the autocatalysis reaction of the epoxy–amine cure reaction. A single‐phase three component model was developed encompassing a two‐component reaction mix and a single polymeric product. The reaction was modelled as an SN2 reaction. Association of the nucleophile with each component in the reaction was defined via a binding constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3579–3586, 2004  相似文献   

13.
A facile synthesis of benzofulvenes was carried out starting from the Morita–Baylis–Hillman adducts of 2-bromobenzaldehyde. The synthesis was carried out via the sequential bromination, Wittig reaction with aldehyde, and Pd-catalyzed intramolecular Mizoroki–Heck reaction. The stereochemistry of benzofulvenes was dependent on the reaction condition, especially on the kinds of base and reaction time, and the substituent of starting materials.  相似文献   

14.
A series of β‐amino esters were synthesized by the reaction of N‐tosyl aldimine or N‐hydroxy aldimine with bromoacetate by sonochemical Reformatsky reaction. The β‐N‐hydroxyamino ester was obtained and the formed sensitive hydroxylamino functionality was resistant under the reaction condition. The β‐lactam also was synthesized by the reaction of Np‐methoxy aldimine as reacting substrate under this sonochemical Reformatsky reaction condition.  相似文献   

15.
A reaction between cobalt oxide and ammonium chloride was studied. A possible mechanism of this reaction was determined by TGA and DSC. The reaction products were identified by IR spectroscopy, chemical and XRD analyses. A multistage mechanism was established for reaction between cobalt oxide and ammonium chloride. Cobalt chloride was determined to be the final product; the reaction occurs via the formation and decomposition of (NH4)3CoCl5, (NH4)2CoCl4, and NH4CoCl3.  相似文献   

16.
Heat of reaction of the hydrolysis-polymerization process of tetraethyl orthosilicate with water in acidic condition was investigated to clarify the thermodynamic driving force of sol-gel reactions. Heat of reaction was measured using an isoperibol calorimeter by mixing a dilute tetraethyl orthosilicate (TEOS) ethanolic solution with another solution of water, ethanol, and hydrochloric acid. The temperature change of the reaction cell had been measured more than 24 hours after mixing under the quasi-isothermal condition. Large exothermic reaction (12.9 kJ·mol–1 for 1 mole of TEOS) due to the hydrolysis of TEOS was observed. A slow exothermic reaction followed it, and after that, the sol-gel reaction was changed to a small endothermic one.  相似文献   

17.
α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products.  相似文献   

18.
The Zimmermann reaction for the determination of 17-ketosteroids was tested under both room-temperature and steam-distillation reaction conditions. meta-Nitroaniline was isolated from the residue of the steam distillation by ether extraction and thin-layer chromatography. Conclusive identification was by infrared spectroscopy. In contrast, m-nitroaniline was not formed under room-temperature reaction conditions, even when allowed to react for 24 hr. Similar results were also obtained for the reaction between acetone and m-dinitrobenzene under alkaline conditions. In conclusion, the results indicate that m-nitroaniline formation cannot account for the conversion of structure I to structure II under room-temperature reaction conditions as investigated herein.  相似文献   

19.
In this study, nine different C-2 aroyl imidazole derivatives were synthesized in a one pot reaction with two steps, and the reduction reactions of these derivatives with NaBH4 were carried out under mild conditions. Substitution reaction of obtained imidazo methanol derivatives with chloroacetylchloride reagent and ring reaction of substitution products were investigated. It was determined that 1,4-imidazoxazinone derivative was obtained as a result of the cyclization reaction. The intermediate products obtained during the cyclization reaction were isolated, and the path of the reaction under different conditions was discussed.  相似文献   

20.
The urethane reaction of 1,2‐propanediol with phenyl isocyanate was investigated with ferric acetylacetonate (Fe(acac)3) as a catalyst. In situ Fourier transform infrared spectroscopy was used to monitor the reaction, and catalytic kinetics of Fe(acac)3 was studied. The reaction rates of both hydroxyl groups were described with a second‐order equation, from which the influence of the Fe(acac)3 concentration and reaction temperature was discussed. It was very surprising that the relationship between 1/C and t became constant when reaction temperature increased, which indicated that there was no reactive distinction between the two hydroxyl groups. Although the phenomenon differed with the variation of temperature, it was unaffected by the Fe(acac)3 concentration. It was attributed to the transformation of the reaction mechanism with the increase in temperature. Furthermore, activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) for the catalyzed reaction were determined from Arrhenius and Eyring equations, which testified to the transformation of the reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号