首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Boundary element-free method for elastodynamics   总被引:3,自引:0,他引:3  
1 Introduction In recent years, more and more attention has been paid to researches on the meshless (or meshfree) method, which makes it a hot direction of computational mechanics[1,2]. The meshless method is the approximation based on nodes, then the large deformation and crack growth problems can be simulated with the method without the re-meshing technique. And the meshless method has some advantages over the traditional computa- tional methods, such as finite element method (FEM) and boun…  相似文献   

2.
A complex variable meshless method for fracture problems   总被引:4,自引:0,他引:4  
1 Introduction The meshless (or meshfree) method has been a hot topic and the development trend of numerical methods for many science and engineering problems in recent years. Comparing with the conventional numerical methods, such as the finite element method and the boundary element method, the meshless method is an approximation based on nodes, and does not form a mesh to determine the shape function in the domain, in which a problem is to be solved. The meshless method has some advantages …  相似文献   

3.
程玉民  王健菲  白福浓 《中国物理 B》2012,21(9):90203-090203
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.  相似文献   

4.
程玉民  李荣鑫  彭妙娟 《中国物理 B》2012,21(9):90205-090205
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.  相似文献   

5.
彭妙娟  刘茜 《物理学报》2014,63(18):180203-180203
基于改进的复变量移动最小二乘法,提出了二维黏弹性问题的改进的复变量无单元Galerkin方法.采用改进的复变量移动最小二乘法建立形函数,根据Galerkin积分弱形式建立求解方程,并用罚函数法施加本质边界条件,推导了二维黏弹性问题的改进的复变量无单元Galerkin方法的计算公式.最后,通过实际算例,将计算结果与复变量无单元Galerkin方法及有限元法的结果进行了对比,说明了本文方法具有更高的计算精度和计算效率.  相似文献   

6.
程荣军  程玉民 《中国物理 B》2016,25(2):20203-020203
By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrödinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.  相似文献   

7.
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.  相似文献   

8.
任红萍  张武 《中国物理 B》2009,18(10):4065-4073
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker δ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker δ function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.  相似文献   

9.
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.  相似文献   

10.
王聚丰  孙凤欣  程玉民 《中国物理 B》2012,21(9):90204-090204
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. And the number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has a higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.  相似文献   

11.
王健菲  程玉民 《中国物理 B》2013,22(3):30208-030208
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, an improved complex variable meshless method (ICVMM) for two-dimensional advection-diffusion problems is developed. The equivalent functional of two-dimensional advection-diffusion problems is formed, the variation method is used to obtain the equation system, and the penalty method is employed to impose the essential boundary conditions. The difference method for two-point boundary value problems is used to obtain the discrete equations. Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented. Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper. It is shown that the ICVMM is very effective for advection-diffusion problems, and has good convergent character, accuracy, and computational efficiency.  相似文献   

12.
白福浓  李东明  王健菲  程玉民 《中国物理 B》2012,21(2):20204-020204
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFG method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.  相似文献   

13.
弹性力学的复变量无网格方法   总被引:12,自引:0,他引:12       下载免费PDF全文
程玉民  李九红 《物理学报》2005,54(10):4463-4471
在移动最小二乘法的基础上,提出了复变量移动最小二乘法.复变量移动最小二乘法的优点是采用一维基函数建立二维问题的逼近函数,所形成的无网格方法计算量小.然后,将复变量移动最小二乘法应用于弹性力学的无网格方法,提出了复变量无网格方法,推导了复变量无网格方法的公式.与传统的无网格方法相比,复变量无网格方法具有计算量小、精度高的优点.最后给出了数值算例. 关键词: 移动最小二乘法 复变量移动最小二乘法 无网格方法 弹性力学 复变量无网格方法  相似文献   

14.
唐耀宗  李小林 《中国物理 B》2017,26(3):30203-030203
We first give a stabilized improved moving least squares(IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.  相似文献   

15.
李兴国  戴保东  王灵卉 《中国物理 B》2010,19(12):120202-120202
In this paper,a meshfree boundary integral equation(BIE) method,called the moving Kriging interpolationbased boundary node method(MKIBNM),is developed for solving two-dimensional potential problems.This study combines the BIE method with the moving Kriging interpolation to present a boundary-type meshfree method,and the corresponding formulae of the MKIBNM are derived.In the present method,the moving Kriging interpolation is applied instead of the traditional moving least-square approximation to overcome Kronecker’s delta property,then the boundary conditions can be imposed directly and easily.To verify the accuracy and stability of the present formulation,three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.  相似文献   

16.
In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.  相似文献   

17.
杨秀丽  戴保东  张伟伟 《中国物理 B》2012,21(10):100208-100208
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.  相似文献   

18.
<正>In this paper,based on the improved complex variable moving least-square(ICVMLS) approximation,a new complex variable meshless method(CVMM) for two-dimensional(2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations,and the essential boundary conditions are imposed by the penalty method.As the transient heat conduction problems are related to time,the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization.Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained.In order to demonstrate the applicability of the proposed method,numerical examples are given to show the high convergence rate,good accuracy,and high efficiency of the CVMM presented in this paper.  相似文献   

19.
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.  相似文献   

20.
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号