首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用柠檬酸凝胶法两步热处理工艺制备了单相Ba2Ti9O20。干凝胶在750 ℃热处理得到了物相为BaTi5O11和Ba4Ti13O30、尺寸为30~50 nm的前驱体粉体。纳米前驱体具有高表面活性,促使单相Ba2Ti9O20在1 200 ℃热处理温度下形成。两步热处理所得的粉体比一步热处理所得的粉体具有更好的烧结和介电特性,两步热处理所得的粉体,在1 250 ℃烧结4 h,可获得理论密度为97%的Ba2Ti9O20微波介质陶瓷,其介电性能:εr=38.5,Qf=19 320 GHz,τf=8.7×10-6-1。  相似文献   

2.
采用固相合成法制备了(WO42(NBW)陶瓷,研究了NBW陶瓷的相结构、形貌、烧结特性和微波介电性能。NBW陶瓷在625~800℃烧结1~4 h能够致密化。X射线衍射表明在625~800℃烧结2 h的NBW陶瓷均为四方晶系白钨矿结构的单相陶瓷。随着烧结温度的提高,NBW陶瓷的介电常数、品质因数(Qf值)先增加后降低,谐振频率温度系数逐渐降低。经650℃烧结2 h获得的NBW陶瓷的介电常数为14.36,Qf值为16 503 GHz,谐振频率温度系数为-1.055×10-5℃-1。NBW陶瓷与银共烧反应生成Ag2W2O7相,而与Au、Al共烧具备化学兼容性。  相似文献   

3.
CaTiO3纳米粉体溶胶-凝胶法合成、表征及介电特性   总被引:4,自引:0,他引:4  
采用无机盐溶胶-凝胶法制备了CaTiO3纳米粉体,采用TG-DTA、XRD、TEM等技术进行了表征,并探讨了CaTiO3纳米粉体烧结特性及介电效应。结果表明,干凝胶800 ℃低温煅烧可获得粒径分布较窄、平均粒径为60~70 nm的单相CaTiO3纳米粉。纳米CaTiO3粉具有较大的比表面积,使作为粉体烧结驱动力的表面能剧增,促使CaTiO3在1 200 ℃实现致密烧结,比固相法制备的微米粉烧结降低100~200 ℃,且具有较宽的烧结温区。与微米级粉体烧结体介电特性相比,纳米粉具有更高的Qf值。纳米CaTiO3粉制备的陶瓷在1 250 ℃烧结2 h,获得优良的介电性能:εr=172,Qf=4 239 GHz,τf=+7.68 × 10-4-1。  相似文献   

4.
刘荣梅  马桂林  周丽  陈蓉 《化学学报》2005,63(6):491-496
以湿化学法制得Zr(OH)4和Sm(OH)3的共沉淀为前驱体, 在碱性介质中用水热法合成了(ZrO2)0.86(Sm2O3)0.14及(ZrO2)0.88(Sm2O3)0.12纳米粉体. 将纳米粉体在较低温度(1450 ℃)下烧结制得了致密的固体电解质陶瓷样品, 比通常高温固相反应法采用的烧结温度(>1600 ℃)降低了150 ℃以上. XRD测定结果表明, (ZrO2)0.86(Sm2O3)0.14纳米粉体及其烧结体均为立方相, 但(ZrO2)0.88(Sm2O3)0.12纳米粉体为立方相, 它的烧结体为立方相和单斜相的混合相. 用交流阻抗谱法、氧浓差电池法及氧泵(氧的电化学透过)法研究了(ZrO2)0.86(Sm2O3)0.14陶瓷样品在600~1000 ℃下的离子导电特性. 结果表明, 该陶瓷样品在600~1000 ℃下氧离子迁移数为1, 氧离子电导率的最大值为3.2×10-2 S•cm-1, 是一个优良的氧离子导体; 它的氧泵性能明显地优于YSZ.  相似文献   

5.
通过调节B2O3‐Bi2O3‐ZnO‐Al2O3(BBZA)玻璃的添加量研究其对钛酸钡(BaTiO3)陶瓷烧结条件、晶体结构和介电性能的影响。结果表明:添加适量的BBZA玻璃能够有效地将BaTiO3陶瓷烧结温度由1350℃降至950℃,并使其致密化。同时,添加BBZA玻璃后,BaTiO3的晶体结构随着烧结温度的升高而发生转变(立方相→四方相)。另外,BBZA玻璃的引入使BaTiO3陶瓷的居里峰得到了有效的抑制和拓宽。陶瓷微观形貌显示,玻璃相均匀分布在BaTiO3晶粒表面。优化的BaTiO3陶瓷制备条件如下:BBZA添加量(质量分数)为2.0%,烧结温度为950℃。在该条件下制备的BaTiO3陶瓷介电常数达到1364,介电损耗低至1.2%。  相似文献   

6.
SrAl2O4∶Eu2+,Dy3+纳米长余辉发光材料的制备与表征   总被引:7,自引:0,他引:7  
采用溶胶-凝胶法制备了SrAl2O4∶Eu2+,Dy3+ 纳米长余辉发光材料,研究了pH值、反应温度和络合剂等对溶胶-凝胶形成的影响,研究了灼烧温度对SrAl2O4∶Eu2+,Dy3+ 晶相、颗粒尺度和发光性能的影响。利用XRD, SEM,光谱分析等手段对产物进行了结构和性能分析。实验结果表明,在800 ℃时SrAl2O4晶相开始形成但没有发光,而在1 100 ℃烧结的样品则具有很好的发光性能。样品平均晶粒尺寸随灼烧温度升高而增加,平均晶粒尺寸为20~40 nm。样品的激发光谱是峰值在240,330,378和425 nm的连续宽带谱,发光光谱是峰值在523nm的宽带谱,与SrAl2O4∶Eu2+,Dy3+ 粗晶材料相比,发光光谱发生了“红移”现象。样品的热释光峰值位于157 ℃,与SrAl2O4∶Eu2+,Dy3+ 粗晶材料相比,峰值向低温移动了13℃。  相似文献   

7.
共沉淀法合成Yb3+∶Y2O3纳米粉及透明陶瓷的性能   总被引:1,自引:0,他引:1  
以Y2O3为基质材料,掺杂不同含量的Yb3+,采用共沉淀法制备出性能良好的Yb3+∶Y2O3纳米粉,将粉体在1 700 ℃和真空度为1×10-3 Pa下烧结5 h得到Yb3+∶Y2O3透明陶瓷。用XRD、TEM、UV-Vis、FL分别对样品的结构、形貌和发光性能进行了研究。结果表明:Yb3+完全固溶于Y2O3的立方晶格中,Yb3+∶Y2O3粉体大小均匀,近似球形,尺寸约40~60 nm。Yb3+∶Y2O3透明陶瓷相对密度为99.7%,在波长600~800 nm范围内其透光率达到80%。Yb3+∶Y2O3透明陶瓷在950 nm处吸收线宽达到26 nm,在1 031 nm和1 076 nm处的发射线宽分别为13 nm和17 nm。  相似文献   

8.
本文研究了Bi2O3掺杂对Ag(Nb0.8Ta0.2)O3陶瓷的结构和介电性能的影响。X射线衍射(XRD)结果表明,Bi2O3的掺杂可以使陶瓷中Ag+被还原并析出,且银析出的量随Bi2O3掺杂量的增加而不断增加,这可能源自于Bi3+对Ag+的取代。在一定范围内增大Bi2O3掺杂量可提高Ag(Nb0.8Ta0.2)O3陶瓷的室温介电常数,降低介电损耗,并使温度系数向负值方向移动。当Bi2O3的掺杂量约为3.5wt%时,样品具有较大的介电常数(ε=672)和较小的介电损耗(tanδ=7.3×10-4)。  相似文献   

9.
以3-三氯锗丙酸和硝酸铝为原料,通过共沉淀法合成了Al6Ge2O13陶瓷粉体,并利用TG-DSC、FTIR、XRD等研究了其形成过程。采用选择还原技术对Al6Ge2O13进行还原处理,还原产物观察到发光峰位于564、611、681、730和774 nm的室温光致发光现象。比较不同温度下还原的样品,发现550 ℃保温3 h还原制备的样品发光强度最强,通过XRD、XPS和Raman光谱研究表明样品在可见和近红外光区的发光是源于平均粒径为1.98 nm且未能形成完整晶格的Ge纳米粒子团簇。  相似文献   

10.
采用甘氨酸-硝酸盐(GNP)法合成了中温固体氧化物燃料电池阴极材料Ba0.4Sr0.6Co1-xFexO3-δ(x=0.0~0.8)系列粉体。利用XRD和SEM对材料的结构和微观形貌进行分析,用直流四端子法测量了烧结陶瓷体在中温(450~800 ℃)范围内的电导率。结果表明,制备的样品为单一钙钛矿相,随着Fe含量增加,XRD衍射峰值向高角度方向稍有偏移。电导率随着温度及Fe含量的变化出现极大值,在x<0.2时,Ba0.4Sr0.6Co1-xFexO3-δ系列烧结体在中温(450~800 ℃)区的电导率,随Fe掺入量的增大而增大,x=0.2样品的电导率最高,800 ℃时达244.7 S·cm-1,远超过文献报道值,进一步增大Fe含量导电性能变差。  相似文献   

11.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

12.
一些具有NASICON型网格结构的固体电解质具有高的电导率和好的稳定性,NASICON的意思是Na Super Ionic Conductor[1]。当NaZr2(PO4)3中P5 被Si4 部分取代时便可以得到具有NASICON结构的Na1 xZr2SixP3-xO12体系,其具有高的钠离子电导率。然而有相同结构的Li1 xZr2SixP3-xO12体系的离子电导率却很低,这是因为Li 半径太小,而NASICON三维网格结构的离子通道太大,两者不匹配而使电导率下降[2]。但当LiZr2(PO4)3中Zr4 被离子半径小些的Ti4 取代,所得LiTi2(PO4)3的通道就与Li 半径相匹配,适合于锂离子的迁移,从而使其电导率…  相似文献   

13.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

14.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

15.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

16.
The ferroelectric ceramics of Bi4Ti3O12, SrBi4Ti4O15, and lanthanum-doped Bi4Ti3O12-SrBi4Ti4O15 were synthesized, and their Raman spectra were investigated. La-doping resulted in the enlargement of remnant polarization of Bi4Ti3O12-SrBi4Ti4O15. The structure of the Bi2O2 layers and TiO6 octahedra of the intergrowth was found to be different from those of Bi4Ti3O12 and SrBi4Ti4O15. La3+ ions exhibit pronounced selectivity for the occupation of A site as La content is lower than 0.50, and tend to be incorporated into Bi2O2 layers when the La content is higher than 0.50. Lanthanum substitution brings about the structural phase transition in Bi4Ti3O12-SrBi4Ti4O15. The variation of ferroelectric property may be attributed to combined contribution from the decreasing of the oxygen vacancies, the relaxation of the lattice distortion, the destroying of the insulation and the space charge compensation effects of the Bi2O2 slabs.  相似文献   

17.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

18.
利用类石墨氮化碳(g-C_3N_4)和亚稳相钙钛氧化物(CaTi_2O_5)固相法制备C_3N_4/CaTi_2O_5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C_3N_4与CaTi_2O_5物质的量之比(nC_3N_4/nCaTi_2O_5)对C_3N_4/CaTi_2O_5复合样品的物相结构和微观形貌的影响,同时考察C_3N_4/CaTi_2O_5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C_3N_4和CaTi_2O_5样品,C_3N_4/CaTi_2O_5复合样品在可见光下具有较高的光催化性能,随着nC_3N_4/nCaTi_2O_5增加,样品的光催化降解率随之增加而后降低,当nC_3N_4/nCaTi_2O_5=1∶1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

19.
利用类石墨氮化碳(g-C3N4)和亚稳相钙钛氧化物(CaTi2O5)固相法制备C3N4/CaTi2O5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C3N4与CaTi2O5物质的量之比(nC3N4/nCaTi2O5)对C3N4/CaTi2O5复合样品的物相结构和微观形貌的影响,同时考察C3N4/CaTi2O5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C3N4和CaTi2O5样品,C3N4/CaTi2O5复合样品在可见光下具有较高的光催化性能,随着nC3N4/nCaTi2O5增加,样品的光催化降解率随之增加而后降低,当nC3N4/nCaTi2O5=1:1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

20.
Magnetic diphase nanostructures of ZnFe2O4/γ-Fe2O3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic nanostructure of ZnFe2O4/γ-Fe2O3 was formed, in which the presence of ZnFe2O4 enhanced the thermal stability of γ-Fe2O3. Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase α-Fe2O3. The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with γ-Fe2O3 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号