首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

2.
In inhomogeneous electric fields, at sufficiently high field strengths, a weakly conducting liquid becomes unstable and is set in motion [1–4]. The cause of the loss of stability and the motion is the Coulomb force acting on the space charge formed by virtue of the inhomogeneity of the electrical conductivity of the liquid [4–13]. This inhomogeneity may be due to external heating [4–6], a local raising of the temperature by Joule heating [2, 7, 8], and nonlinearity of Ohm's law [9–13]. In the present paper, in the absence of a temperature gradient produced by an external source, a condition is found whose fulfillment ensures that the influence of Joule heating on the stability can be ignored. Under the assumption that this condition is satisfied, a criterion for stability of a weakly conducting liquid between spherical electrodes is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–142, July–August, 1979.  相似文献   

3.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

4.
Experiments show that a weakly conducting fluid in a plane-parallel system of electrodes is set into motion if the field intensity is sufficiently great [1–5]. The loss of stability is due to the formation of charges near the electrodes and the influence of the Coulomb forces on these charges. The formation of the space charges is usually attributed to oxidation-reduction electrode reactions and bulk recombination of the ions formed at the electrodes [1–4]. In the present paper, the stability of a weakly conducting fluid in a plane-parallel system of electrodes with symmetric distribution of the space charge is studied. The methods of the theory of solution bifurcation are used to construct the stationary flow which arises after the loss of stability and to investigate the stability of this flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 20–26, July–August, 1981.  相似文献   

5.
Solutions to a piezoelectric half-plane with a fixed conductor surface electrode subjected to two generalized singularities (line dislocation and/or line force and free charge) are presented. Coulomb forces acting on the singularities due to the boundary polarization charges of medium and the induction charges of conductor electrode are analyzed in detail. The interaction between the two singularities is also analyzed numerically. Results show that Coulomb forces will become important as the free charge approaches the boundary or two singularities move closely. Project supported by the National Science Foundation of China (No. 10172036).  相似文献   

6.
The flow of an electrically conductive liquid past a solid spherical particle at low Reynolds and Hartmann numbers in longitudinal and transverse magnetic fields was first investigated in [1,2]. The effect of a weak magnetic field on the strength of the resistance of a conductive drop in a dielectric medium was considered in [3]. In the present paper we consider the motion of a conductive liquid drop in an electrically conductive medium and calculate the strength of the resistance in the Stokes approximation for an arbitrary orientation of the uniform magnetic field and in the Oseen approximation for the case in which the direction of the magnetic field coincides with the direction of the oncoming stream. As in the previous studies, we do not consider the possibility of the formation of a double layer on the interface between the phases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 19–25, November–December, 1978.The authors are grateful to G. I. Petrov and the participants in the seminar they conducted for their comments on the work.  相似文献   

7.
Charging of disperse particles with good conduction in two-phase media with unipolar charge is considered in the case when the volume concentration of the particles is low. For this, in the framework of electrohydro-dynamics [1, 2], a study is made of the charge of one perfectly conducting liquid particle in a gas (or liquid) with unipolar charge in a fairly strong electric field. The influence of the inertial and electric forces on the motion of the gas is ignored, and the velocities are found by solving the Hadamard—Rybczynski problem. We consider the axisymmetric case when the gas velocity and electric field intensity far from the particle are parallel to a straight line. The analogous problem for a solid spherical particle was solved in [3–6] (in [3], the relative motion of the gas was ignored, while in [4–6] Stokes flow around the particle was considered). The two-dimensional problem of the charge of a solid circular, perfectly conducting cylinder in an irrotational flow of gas with unipolar charge was studied in [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 108–115, November–December, 1980.We thank L. I. Sedov and V. V. Gogosov for a helpful discussion of the present work.  相似文献   

8.
Hydrodynamic phenomena in weakly conducting single-phase media due to interphase electric stresses are reviewed in [1]. In the present paper, a model is constructed of a dielectric suspension with body couples due to the field acting on free charges distributed on the surface of the particles of the suspension. Averaging of the microscopic fields yields macroscopic equations for the field and the polarization of the dielectric suspension with allowance for the finite relaxation time of the distribution of the free charge on the phase interface. The developed model is used to consider the occurrence of spontaneous rotation of a dielectric cylinder in a weakly conducting suspension in the presence of an electric field; compared with the case of single-phase media [2], this is characterized by a significant reduction in the threshold intensity of the electric field with increasing concentration of the particles [3]. In the present model of a dielectric suspension, the destabilization of the cylinder is due to the occurrence of rotations of the particles of the suspension due to the interaction between the polarization and the motion of the medium. The relaxation equation for the polarization for the given model is analogous to the corresponding equation for media which can be magnetized [4–6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 86–93, March–April, 1980.  相似文献   

9.
The characteristics of the motion of a particle in an electrically conducting liquid with constant crossed electric and magnetic fields present have been investigated in connection with the problem of MHD-separation in many papers (for example, see the bibliography in [1]). The separation of electrically conducting particles contained in a dielectric liquid, which can be accomplished with the help of a variable magnetic field [2], is also of practical interest. The ponderomotive force acting on a spherical conducting particle near a straight conductor through which the discharge current of a capacitor bank is flowing is found in this paper, and the motion of a particle in a viscous liquid under the action of this force is investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 31–34, November–December, 1984.  相似文献   

10.

This paper focuses on the attitude dynamics of a defunct axisymmetric satellite under the action of Coulomb forces to enable active space debris removal. Touchless Coulomb interaction occurs between an active spacecraft and the passive satellite at a fixed separation distance. The recently developed multi-sphere method of Schaub and Stevenson allows providing a simplified electrostatic force and torque model between non-spherical space objects. The existence of torques between charged bodies makes it necessary to study the attitude motion of the passive satellite for ensuring the safety of the space debris removal. The goal is first to deduce the equations of motion in the canonical form which is suitable for analytical analysis and then to construct a phase portrait, and to obtain exact solutions using Jacobi elliptic functions. Finally, for the disturbed motion of the system of two bodies, when the distance between the active spacecraft and the defunct satellite (or) and charge voltage changes slowly over time, adiabatic invariants are found in terms of the complete elliptic integrals. In this case, the adiabatic invariants are approximately first integrals of the disturbed system and they remain approximately constant for long time intervals during which the parameters change considerably. For a plane motion, the adiabatic invariants used to obtain an analytical solution for envelope of a deflection angle of the defunct satellite. This work extends the theory to the three-dimensional tumbling motion of a satellite on an orbit. The obtained results can be applied to study an opportunity of the space debris removal by the Coulomb interaction with the active spacecraft as a pusher.

  相似文献   

11.
In [1] a model of a wave generator, together with an experimental apparatus to determine the traditional forces generated by the model in water, is described. At the surface of the model six axisymmetric traveling waves are generated, giving rise to motion of the body and the surrounding liquid. The steady flow of liquid caused by oscillations of a cylindrical surface of infinite length was investigated in [2, 3]. The present work investigates the tractional forces of an elongated solid of revolution in a liquid produced by waves traveling over the flexible cylindrical part of the body. The hydrodynamic surface forces are determined by numerical integration of the Navier-Stokes equation. Graphs of the tractional force against the velocity and amplitude of the waves are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 145–149, May–June, 1977.In conclusion, thanks are due to M. A. Il'gamovfor his interest in the work and for useful advice.  相似文献   

12.
The pairwise hydrodynamic and electrostatic interaction between micrometer-sized water droplets at small distances between them due to their evaporation and the presence of an electric charge on at least one of them is considered. The velocities of the steady-state motion of charged water drops with radii of 1 and 10 μm evaporating in air are calculated. It is shown that at small distances between the drops the joint action of hydrodynamic attraction and polarization interaction, always of attraction type, favor the coalescence of the drops (or drops and solid particles), leading to the displacement of the maximum of the function of drop distribution over size to the region of greater sizes and the gravity sedimentation of large drops. At large distances between the drops, when the short-distance hydrodynamic and polarization attractive forces become smaller than the long-distance Coulomb repulsion forces between likely charged particles, this distance tends to increase. These phenomena give a microphysical explanation to the phenomenon of electrostatic blooming in optically dense smokes and mists.  相似文献   

13.
Quasiharmonic wave motions of a thin liquid film flowing in a vertical plane due to gravitational force, capillary forces, and a tangential stress acting on the film-gas boundary are considered. The region of existence and spectral characteristics of the quasiharmonic wave solutions in different film-motion regimes (cocurrent and countercurrent) are found.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 66–73, January–February, 1976.  相似文献   

14.
If a fluid is electrically conductive, its flow may be controlled using electromagnetic forces. Meanwhile, this technique is a recognized tool even on an industrial scale for handling highly conductive materials like liquid metals. However, also fluids of low electrical conductivity as considered in the present study, like sea-water and other electrolytes, permit electromagnetic flow control. Experimental results on the prevention of flow separation by means of a streamwise, wall parallel Lorentz force acting on the suction side of inclined flat plates and hydrofoils will be presented.  相似文献   

15.
Difficulties in determining experimentally the local electrical parameters of unipolar-charged jets are arousing interest in the theoretical investigation of electrogasdynamic (EGD) flows. Free EGD jets were examined, for example, in [1–3]. In order to control the charge on the dielectric parts of aircraft surfaces, which results from their static electrification and may have certain negative consequences [4], and, moreover, to influence the flow in the boundary layer use is being made of unipolar-charged jets propagating near the dielectric [5, 6]. In [6] the case of an ion jet near a dielectric surface possessing surface conductivity was investigated. In these circumstances it is possible to neglect charge diffusion, which considerably simplifies the problem. Space charge diffusion was taken into account in [7], but subject to certain very important simplifications. The author has calculated the electrical parameters of a unipolar-charged jet propagating in a viscous incompressible gas near an ideal dielectric plate, with allowance for surface and polarization charges and, moreover, the diffusion processes near the surface. An asymptotic solution is obtained for the equations of the ionic diffusion layer as the ratio of the thickness of the diffusion layer to the thickness of the hydrodynamic boundary layer tends to zero.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 174–180, September–October, 1984.The author is grateful to V. V. Mikhailov and A. V. Kazakov for valuable advice and comments.  相似文献   

16.
The viscous additions to the stress tensor on the half–space surface over which a ball moves are calculated with the use of a viscosity (dissipative) tensor. The rolling friction force which corresponds to the Coulomb law and which is proportional to the velocity and which is simultaneously the lower estimate for the sliding friction force is found. Expressions for the radial and vertical displacements on the surface of an elastic half–space are given.  相似文献   

17.
The methods of the mechanics of continuous media [1] are used to consider the problem of electrization of dielectric liquids flowing in tubes [2–6]. According to modern ideas [2–6], there is always dissolved in such liquids a slight admixture of an electrolyte, whose molecules in such a dilute solution dissociate to a certain extent into positively and negatively charged ions. On the walls, oxidizing and reducing reactions take place, as a result of which the negative and positive ions, respectively, give up to the wall surplus electrons or take missing electrons from it. Thus, a positive (respectively, negative) total electric charge is induced in the liquid by the flow. We consider in this paper the electrization of a dielectric liquid in laminar flow in a circular cylindrical tube. We find the distribution of the electric charge in the liquid, the maximal electric current, and the dependence of the length over which the distribution of the electric charge in the tube is established on the tube radius, the Debye radius of the liquid, and the Péclet diffusion number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 41–47, November–December, 1979.We thank V. V. Gogosov for helpful comments made in a discussion of thwe work.  相似文献   

18.
The equations of motion of multiphase mixtures have been considered in [1–10] and several other studies. In [1] it is proposed that the mixture motion be considered as an interpenetrating motion of several continua when velocity, pressure, mean density, concentration, etc., fields for each phase are introduced in the flowfield. The equations of motion are written separately for each phase, and the force effect of the other components is considered by introducing the interaction forces, which for the entire system are internal. The assumption of component barotropy is used to close the system.The energy equations are used in [2, 3] in place of the component barotropy assumption. Moreover, mixtures without phase transformations are considered. In [4] an analysis is made of the equations of turbulent motion with account for viscous forces for a two-velocity, but single-temperature medium in which equilibrium phase transformations are assumed, i. e., a two-phase medium is considered in which the phase temperatures are the same, the composition is equilibrium, but the phase velocities are different. In [5] the equations are written on the interface in a multicomponent medium consisting of barotropic fluids. A discontinuity classification is also presented here. In the aforementioned work [3] the equations on the shock are written for a continuum with particles without the use of the property of barotropy of the carrier fluid. Various different aspects of the motion of multiphase mixtures are considered in [6–11], for example, the effect of particle collisions with one another, the effect of the volume occupied by the particles on the parameters stream, shock waves, etc. In [7] a study is made of the force effect of an agitated medium on a particle on the basis of the Basset-Boussinesq-Oseen equation.In the following we derive the equations of motion of a two-velocity and two-temperature continuum with drops or particles with nonequilibrium phase transformations, i. e., a medium in which the phase velocities and temperatures are different and the composition may be nonequilibrium. In addition, we study the effect of the presence of particles or drops on the gas parameters behind a shock. Further, the equations obtained here are used to study compression waves, and in particular shock waves.The author wishes to thank Kh. A. Rakhmatulin, S. S. Grigoryan, and Yu. A. Buevich for helpful discussions and valuable comments.  相似文献   

19.
Pseudoturbulent motions of phases are considered as well as the internal structure of monodispersional locally uniform suspension of particles in a liquid when the derivatives of the dynamic variables which describe the mean flow of the suspension are ignored. One assumes that the number of collision dissipations, which expresses the ratio of the dissipation force due to acceleration of the fluid phase in the case of stepwise change in the velocities of the colliding particles to the forces of viscous interaction, is small. Dynamic equations which determine the motion of the suspension in its continuous approximation and the balance equation of the pseudoturbulent energy of the particles are obtained with an approximation which is similar to the Euler approximation in the hydrodynamics of a single-phase medium.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 91–101, July–August, 1970.  相似文献   

20.
A continuum model is presented for the motion of a domain wall in a plane 90°-domain configuration subjected to an isolated extrinsic charge near the surface of a ferroelectric single crystal. Local pinning is postulated for the kinetic law. Before the appearance of the extrinsic charge, all polarization surface charges are taken to be neutralized by environmental charges. The domain wall motion after the appearance of the extrinsic charge is assumed to proceed sufficiently fast without any significant conductive currents on the surface or in the interior of the crystal such that new surface and interface polarization charges remain unscreened and contribute to the ferroelectric anisotropy energy. A non-admissible divergence of the electric field and consequently of the local thermodynamic driving force and of the domain wall velocity appears in the model if the domain wall charged by interface polarization charges intersects the crystal surface charged by surface polarization charges under an arbitrary angle. The physically possible domain wall angle is identified using the condition of a non-divergent driving force. The ferroelectric anisotropy energy and an intrinsic surface energy of the domain wall, however, do not provide stability of the domain wall trajectory against an unlimited increase of its curvature at the surface. The problem has been solved conceptually by proper account of the domain wall bending energy. Numerical and dimensional analysis explain also why domain walls driven by extrinsic charges remain almost straight in soft ferroelectrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号