首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize the pharmacokinetics of protein-free camptothecin in blood and brain we implanted microdialysis probes into the jugular vein and striatum of rats for unbound drug sampling and determination. Camptothecin (2 or 5 mg/kg, i.v., n=6) was then administered from the femoral vein, and microdialysates were collected from blood and brain of both sites and assayed by a validated microbore scale high-performance liquid chromatographic method. The mobile phase consisted of methanol–100 mM monosodium phosphoric acid (35:65, v/v, pH 2.5) with a flow-rate 0.05 ml/min. The fluorescence response for camptothecin was observed at excitation and emission wavelengths of 360 and 440 nm, respectively. Pharmacokinetic parameters were calculated from the corrected data for dialysate concentrations of camptothecin versus time. The results suggest that the pharmacokinetics of unbound camptothecin in blood and brain can be fitted best to a two- and one-compartment model, respectively. Camptothecin rapidly entered the extracellular fluid of brain striatum at 10 min following camptothecin administration.  相似文献   

2.
To elucidate the disposition of nicotine in the brain is important because the neuropharmacological effects from nicotine exposure are centrally predominated. The aim of the present study was to develop a rapid and simple method for the simultaneous determination of unbound nicotine and its main metabolite, cotinine, in rat blood and brain tissue. We coupled a multiple sites microdialysis sampling technique with HPLC-UV system to characterize the pharmacokinetics of both nicotine and cotinine. Microdialysis probes were inserted into the jugular vein/right atrium and brain striatum of Sprague-Dawley rats, and nicotine (2 mg/kg, i.v.) was administered via the femoral vein. Dialysates were collected every 10 min and injected directly into a HPLC system. Both nicotine and cotinine were separated by a phenyl-hexyl column (150 mm x 4.6 mm) from dialysates within 12 min. The mobile phase consisted of an acetonitrile-methanol-20 mM monosodium phosphate buffer (55:45:900, v/v/v, pH adjusted to 5.1) with a flow-rate of 1 ml/min. The wavelength of the UV detector was set at 260 nm. The limit of quantification for nicotine and cotinine were 0.25 microg/ml and 0.05 microg/ml, respectively. Intra- and inter-day precision and accuracy of both measurements fell well within the predefined limits of acceptability. The blood and brain concentration-time profile of nicotine and cotinine suggests that nicotine is easily to get into the central nervous system and cotinine exhibits a long retention time and accumulates in blood.  相似文献   

3.
A sensitive microbore liquid chromatographic method combined with the minimally invasive technique of microdialysis was devised for simultaneously and continuously monitoring the levels of unbound blood and brain cefazolin in rats. Microdialysis probes were inserted into the jugular vein and brain striatum for blood and brain sampling, respectively. Chromatographic conditions consisted of a mobile phase of methanol-acetonitrile-100 mM monosodium phosphoric acid (20:10:70, v/v, pH 4.5) pumped through a microbore reversed-phase column at a flow rate of 0.05 mL/min. The ultraviolet detection wavelength was set at 270 nm. An on-line design allowed direct and continuous analysis of protein-free samples in the dialysate. Microdialysis probes, being home-made, were screened for acceptable in vivo recovery. Chromatographic resolution and detection were validated for response linearity as well as intra-day and inter-day variabilities. This method was then applied to pharmacokinetic profiling of protein unbound cefazolin in both the blood and brain following intravenous administration (10 mg/kg, i.v., n = 6). Rapid appearance of cefazolin in the rat brain striatal dialysate following drug injection suggested good blood-brain barrier penetration. According to a non-compartmental pharmacokinetics model, the area under the concentration (AUC) vs time ratio of cefazolin in rat brain and blood was 6%.  相似文献   

4.
To investigate the pharmacokinetics of unbound chlorogenic acid, a sensitive microbore liquid chromatographic method for the determination of chlorogenic acid in rat blood by microdialysis has been developed. A microdialysis probe was inserted into the jugular vein of male Sprague–Dawley rats, to which chlorogenic acid (20, 40, 60 or 80 mg/kg, i.v.) had been administered. On-line microdialysate was directly injected into a microbore column using a methanol–100 mM sodium dihydrogenphosphate (30:70, v/v, pH 2.5 adjusted with orthophosphoric acid) as the mobile phase and ultraviolet detection at 325 nm. The method is rapid, easily reproduced, selective and sensitive. The limit of detection for chlorogenic acid was 0.01 μg/ml and the limit of quantification was 0.05 μg/ml. The in vivo recovery of the chlorogenic acid of the microdialysis probe, based on a 5 μg/ml standard, was approximately 49–65% (n=6). The disposition of chlorogenic acid at each dose was best fitted to a two-compartment pharmacokinetic model. The area under the concentration curve increased greater than in direct proportion with the dose and terminal disposition become much slower as the dose was increased. The results indicated that the pharmacokinetics of unbound chlorogenic acid in rat blood is non-linear.  相似文献   

5.
《Analytical letters》2012,45(15):3213-3224
ABSTRACT

An in vivo microdialysis sampling method coupled to high-performance liquid chromatography has been applied for continuous monitoring of unbound ampicillin in rat blood. A microdialysis probe was inserted into the jugular vein/right atrium of Sprague-Dawley rats, and doses of 100 and 200 mg/kg ampicillin were then administered via the femoral vein. Dialysates were collected and directly injected into a liquid chromatographic system. Isocratic elution of ampicillin was achieved within 10 min using the liquid chromatographic system. The chromatographic mobile phase consisted of methanol-100 mM monosodium phosphoric acid (25:75, v/v, pH 5.5). The wavelength of the UV detector was set at 230 nm. The calibration curves from 0.25 to 50 μg/ml were linear with correlation coefficients of 0.995. The method provides a simple technique for rapid analysis of unbound ampicillin in rat blood for used in pharmacokinetic study.  相似文献   

6.
To analyze unbound cefamandole in rat blood, a method combing microdialysis with microbore liquid chromatography has been developed. A microdialysis probe was inserted into the jugular vein/right atrium of male Sprague-Dawley rats to examine the unbound cefamandole level in the rat blood following cefamandole administration (50 mg/kg, i.v.). The dialysates were directly submitted to a liquid chromatographic system. Samples were eluted with a mobile phase containing acetonitrile-methanol-100 mM monosodium phosphate (pH 5.0; 15:20:65, v/v). The UV wavelength was set at 270 nm for monitoring the analyte. Using the retrograde method, at infusion concentrations of 1 microg/mL of cefamandole, the in vivo microdialysis recoveries were 55.44% for the rat blood (n = 6). Intra- and inter-assay accuracy and precision of the analyses were < or = 10% in the range of 0.1-10 microg/mL. Pharmacokinetic parameters were calculated from the recovery-corrected dialysate concentrations of cefamandole vs time data. The elimination half-life (t1/2,beta) was 21.6 +/- 1.6 min. The results suggest that the pharmacokinetics of unbound cefamandole in blood following cefamandole administration (50 mg/kg, i.v., n = 5) fit best to the two-compartmental model.  相似文献   

7.
Hydroxytyrosol [4-(2-hydroxyethyl)-1,2-benzenediol] is a well known natural polyphenolic component with antioxidative effects from olive oil and an aglycone of acteoside. In order to examine the in vivo metabolism of acteoside to hydroxytyrosol and the distribution of hydroxytyrosol in the blood and brain, microdialysis coupled to a liquid chromatographic system was developed to evaluate the pharmacokinetics of free-form hydroxytyrosol in rat blood and brain. Probes were implanted in the jugular vein and the brain hippocampus for blood and brain sampling purposes. Hydroxytyrosol in the microdialysis samples was separated by a reversed-phase C18 column and eluted with a mobile phase containing acetonitrile – 2% acetic acid (pH 2.6) (12:88, v/v), using a flow rate for the mobile phase of 1 mL/min. Fluorescence detection for hydroxytyrosol was set at 281 nm and 316 nm for excitation and emission wavelengths, respectively. Hydroxytyrosol and endogenous interference could be resolved within 10 min by the developed chromatographic method. The results indicated that acteoside was metabolized immediately to hydroxytyrosol in vivo and eliminated rapidly from the blood, and hydroxytyrosol could enter the brain. The blood-to-brain distribution ratio was defined by dividing the area under concentration versus time (AUC) ratio of AUCbrain/AUCblood, which represents the AUC for brain and blood. The results suggested that the P-glycoprotein was not involved in the brain efflux transport of hydroxytyrosol.  相似文献   

8.
A rapid and sensitive system of liquid chromatography coupled with microdialysis was developed for the simultaneous determination of unbound thalidomide in rat blood, brain and bile for pharmacokinetic study. Microdialysis probes were concurrently inserted into the jugular vein toward the right atrium, the brain striatum and the bile duct of the anesthetized Sprague-Dawley rats for biological fluid sampling after the administration of thalidomide (5 mg kg(-1)) through the femoral vein. Thalidomide and dialysates were separated using a Zorbax ODS C(18) column and a mobile phase comprising acetonitrile-methanol-0.1 mm 1-octanesulufonic acid (32:3:65, v/v/v, pH 5.3) at flow rate of 1 mL min(-1). The UV wavelength was set at 220 nm. The concentration-response relationship was linear (r(2)>0.995) over a concentration range of 0.025--25 microg mL(-1). The intra-assay and inter-assay precision and accuracy of thalidomide fell within 7%. The average in vivo recoveries were 0.31+/- 0.02,0.046+/- 0.004 and 0.57+/- 0.02 (n=6), respective to the dialysates of blood, brain and bile, with thalidomide at concentrations 2, 5 and 10 microg mL(-1). The disposition of thalidomide in the blood, brain and bile fluid suggests that there is a rapid thalidomide exchange and equilibration between the blood and brain systems. In addition, thalidomide undergoes hepatobiliary excretion.  相似文献   

9.
Gastrodin is a bioactive constituent of rhizome in Gastrodia elata Blume (Orchidaceae) The aim of this study is to develop a rapid and sensitive liquid chromatographic method coupled to microdialysis sampling system to measure the unbound of gastrodin in rat blood, brain and bile. Microdialysis probes were simultaneously inserted into the jugular vein, brain striatum and bile duct of each anesthetized rat for sampling after the administration of gastrodin (100 or 300 mg kg−1) through the femoral vein. Separation of unbound gastrodin from various biological fluids was applied to an RP-select B column (250 mm × 4.6 mm i.d., 5 μm). The mobile phase consisted of acetonitrile–50 mM potassium dihydrogen phosphate buffer–triethylamine (5:95:0.1, v/v/v, adjusted to pH 2.5 with orthophosphoric acid) with a flow rate of 1 mL min−1. The UV detector wavelength was set at 221 nm. Fifteen minutes after the administration, the gastrodin reached the peak concentration in brain and bile. In addition, the results indicate that gastrodin penetrates the blood-brain barrier (BBB) and goes through hepatobiliary excretion.  相似文献   

10.
To investigate the disposition of unbound cocaine in the rat blood, brain and bile, we demonstrate an in vivo multiple sampling microdialysis system coupled with liquid chromatography for cocaine assay and verified by tandem mass spectrometry. Three microdialysis probes were concurrently inserted into the jugular vein, bile duct and brain striatum of each anesthetized rat. After a period of 2 h post-surgical stabilization, cocaine (10 mg kg(-1)) was administered through the femoral vein. Separation of unbound cocaine from various biological fluids was applied to a reversed-phase C(18) column (250 x 4.6 mm I.D., 5 microm). The mobile phase consisted of acetonitrile--10 mm potassium dihydrogen phosphate buffer (25:75, v/v, pH 4.0) and 0.8% diethylamine at a flow rate of 1 mL min(-1). The UV detector wavelength was set at 235 nm. The results indicate that cocaine penetrates the blood--brain barrier with a rapid distribution. However, unbound cocaine in the bile dialysate was not detectable in the UV detection. We therefore use LC--tandem mass spectrometry to detect the bile fluid after cocaine administration (3 mg kg(-1), i.v.). The results indicate that cocaine goes through hepatobiliary excretion.  相似文献   

11.
The aim of this study was to develop a rapid and sensitive method for the simultaneous determination of unbound levofloxacin in rat blood and bile using high-performance liquid chromatography coupled with microdialysis for further pharmacokinetic study. Microdialysis probes were simultaneously inserted into the jugular vein toward the right atrium and the bile duct of male Sprague-Dawley rats for biological fluid sampling after administration of levofloxacin 3 mg/kg through the femoral vein. Levofloxacin and dialysates were separated using a Merck LiChrospher reversed-phase C18 column maintained at ambient temperature. The mobile phase was comprised of acetonitrile-1 mM 1-octanesulfonic acid (40:60, v/v, pH 3.0 adjusted with orthophosphoric acid). The fluorescence response for levofloxacin was observed at excitation and emission wavelengths of 292 and 494 nm, respectively. The detection limit of levofloxacin was 50 ng/ml. Intra-day and inter-day precision and accuracy of levofloxacin measurements fell well within the predefined limits of acceptability. The disposition of levofloxacin in the blood and bile fluid suggests that there was rapid exchange and equilibration between the blood and hepatobiliary systems, and the plasma level of levofloxacin was greater than that of the bile. Thus, levofloxacin undergoes hepatobiliary excretion but might not be related to the P-glycoprotein transport system.  相似文献   

12.
A microdialysis method followed by a microbore liquid chromatographic ultraviolet detection procedure has been performed for the assay of unbound cefsulodin in rat blood. A microdialysis probe was inserted into the jugular vein for blood sampling. This method involves an on-line design for submitting dialysate into the liquid chromatographic system. The chromatographic conditions consisted of a mobile phase of methanol-100 mM monosodium phosphoric acid (10:90, v/v, pH 5.0) pumped through a microbore reversed-phase column at a flow-rate of 0.05 ml/min. Detection wavelength was set at 265 nm. Microdialysis probes, being laboratory-made, were screened for acceptable in vivo recovery while chromatographic resolution and detection were validated for response linearity as well as intra- and inter-day variabilities. The method was then applied to pharmacokinetics profiling of cefsulodin in the blood following intravenous administration of cefsulodin (20 mg/kg) in rats. Pharmacokinetics were calculated from the corrected data for dialysate concentrations of cefsulodin versus time. Based on pharmacokinetic calculation, cefsulodin best fitted to a two-exponential disposition. This study provided specific pharmacokinetic information for protein-unbound cefsulodin and demonstrated the applicability of this continuous sampling method for pharmacokinetic study.  相似文献   

13.
Mangiferin (2-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthen-9-one) has been isolated from the herbal root of Anemarrhena asphodeloides Bung showing antioxidative, antiviral, and anticancer effect. An in vivo microdialysis sampling method coupled to microbore high-performance liquid chromatography (HPLC) was employed for continuous monitoring of free mangiferin in rat blood. Microdialysis probes were inserted into the jugular vein/right atrium and brain striatum of Sprague-Dawley rats, and mangiferin at doses of 10, 30 or 100 mg/kg were then administered via the femoral vein. Dialysates were collected every 10 min and injected directly into a microbore HPLC system. Mangiferin was separated by a reversed-phase C18 microbore column (150 x 1 mm) from dialysate within 10 min. The mobile phase consisted of acetonitrile-0.05% phosphoric acid-tetrahydrofuran (10:75:15, v/v/v) with a flow-rate of 0.05 ml/min. The wavelength of the UV detector was set at 257 nm. The limit of quantification for mangiferin was 0.05 microg/ml and in vivo recovery of mangiferin at concentrations of 1, 5 and 10 microg/ml was in range of 37.7-39.8%. The results indicate that the pharmacokinetics of mangiferin at doses of 10-30 mg/kg reveals a linear relation, while doses of 30-100 mg/kg show a nonlinear pharmacokinetic phenomenon. Mangiferin was undetectable in brain dialysate. The proposed method provides a technique for rapid and sensitive analysis of free mangiferin in rat blood and further application in pharmacokinetic study. Furthermore, the metabolites of mangiferin in the rat bile were confirmed by LC electrospray ionization (ESI) tandem mass spectrometry (MS-MS).  相似文献   

14.
Previously compound I showed great anti-glioblastoma activity without toxicity in a mouse xenograft study. In this study, a sensitive and rapid high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method was developed and validated to investigate the pharmacokinetics and brain distribution of compound I in mice. The protein precipitation method was applied to extract the compound from mouse plasma and brain homogenates, and it was then separated using a Kinetex C18 column with a mobile phase consisting of acetonitrile–0.1% formic acid water (50:50, v/v). The analytes were detected with multiple reaction monitoring for the quantitative response of the compounds. The inter- and intra-day precisions were <8.29 and 3.85%, respectively, and the accuracy range was within ±7.33%. The method was successfully applied to evaluate the pharmacokinetics of compound I in mouse plasma and brain tissue. The peak concentration in plasma was achieved within 1 h. The apparent elimination half-life was 4.06 h. The peak concentration of compound I in brain tissue was 0.88 μg/g. The results indicated that compound I was rapidly distributed and could cross the blood–brain barrier. The pharmacokinetic profile summarized provides valuable information for the further investigation of compound I as a potential anti-glioblastoma agent.  相似文献   

15.
To investigate the pharmacokinetics of unbound ranitidine in rat blood and bile, multiple microdialysis probes coupled to a liquid chromatographic system were developed. This study design was parallel in the following groups: the control-group of six rats received ranitidine alone (10 and 30 mg/kg, i.v.), the treated-group rats were co-administered with ranitidine and cyclosporine (P-glycoprotein (P-gp) inhibitor) or quinidine (both organic cation transport (OCT) and P-gp inhibitors) in six individual rats. Microdialysis probes were inserted into the jugular vein and the bile duct for blood and bile fluids sampling, respectively. Ranitidine in the dialysate was separated by a reversed-phase C18 column (Zorbax, 150 mm x 4.6 mm i.d.; 5 microm) maintained at ambient temperature. Samples were eluted with a mobile phase containing acetonitrile-methanol-tetrahydrofuran-20 mM K2HPO4 (pH 7.0) (24:20:10:946, v/v), and the flow rate of the mobile phase was 1 ml/min. The optimal UV detection for ranitidine was set at wavelength 315 nm. Between 20 and 30 min after drug administration (10 or 30mg/kg), the ranitidine reached the maximum concentration in the bile. The bile-to-blood distribution ratio (AUC(bile)/AUC(blood)) was 9.8 +/- 1.9 and 13.9 +/- 3.8 at the dosages of 10 and 30 mg/kg, respectively. These studies indicate that ranitidine undergoes hepatobiliary excretion which against concentration gradient from bile-to-blood. In addition, the AUC of ranitidine in bile decreased in the treatment of cyclosporine or quinidine, which suggests that the hepatobiliary excretion of ranitidine was partially regulated by P-glycoprotein or organic cation transporter.  相似文献   

16.
High-performance liquid chromatography coupled to microdialysis was used for the simultaneous determination of unbound berberine in rat blood, liver and bile for a pharmacokinetic study. Microdialysis probes were simultaneously inserted into the jugular vein toward the right atrium, the median lobe of the liver, and the bile duct of male Sprague-Dawley rats for biological fluid sampling after administration of berberine (10 mg/kg) through the femoral vein. Berberine and dialysates were separated using a Zorbax SB-phenyl column and a mobile phase comprised of acetonitrile-methanol-20 mM monosodium phosphate (pH 3.0) (35:20:45, v/v) together with 0.1 mM 1-octanesulfonic acid. The detection limit for berberine was 10 ng/ml. The concentration-response relationship was linear (r2 > 0.995) over the concentration range 0.05-50 microg/ml; intra-assay and inter-assay precision and accuracy for berberine fell within predefined limits. The disposition of berberine in the blood, liver and bile fluid suggests that berberine might be metabolized in the liver and undergo hepatobiliary excretion.  相似文献   

17.
A rapid, selective, and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of unbound sunitinib and its active metabolite N‐desethyl sunitinib in plasma. Plasma and post‐dialysis buffer samples were extracted using a liquid–liquid extraction procedure with acetonitrile–n‐butylchloride (1:4, v/v). Chromatographic separation was achieved on a Waters X‐Terra® MS RP18 column with a mobile phase consisting of acetonitrile and water (60:40, v/v) containing formic acid (0.1%, v/v) using an isocratic run, at a flow‐rate of 0.2 mL/min. Analytes were detected by electrospray tandem mass spectrometry in the selective reaction monitoring mode. Linear calibration curves were generated over the ranges 0.1–100 and 0.02–5 ng/mL for sunitinib and 0.2–200 and 0.04–10 ng/mL for N‐desethyl sunitinib in plasma and in phosphate‐buffered solution, respectively. The values for both within‐day and between‐day precision and accuracy were well within the generally accepted criteria for analytical methods. The analytical range was sufficient to determine the unbound and total concentrations of both analytes. The method was applied for measurement unbound concentrations in addition to total concentrations of sunitinib and its metabolite in plasma of a cancer patient receiving 50 mg daily dose. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A simple, accurate and sensitive HPLC method was developed for measuring total and unbound mycophenolic acid (MPA) in human plasma. Total MPA was extracted by protein precipitation and ultrafiltration was used to assess unbound MPA concentrations. The supernatant (20 microL) or ultrafiltrate (100 microL) was injected onto a C(18) HPLC column with a mobile phase of 0.05 m sodium phosphate buffer (pH 2.31)-acetonitrile (55:45, v/v for total MPA; 50:50 for unbound MPA) with UV detection at 254 nm. The extraction recovery was over 93% and reproducible. The assay was linear over the concentration range of 0.07-50 mg/L for total MPA and 4-1500 microg/L for unbound MPA. Intra- and inter-day assay reproducibility was less than 10%. Detection limits were 0.04 mg/L and 2 microg/L for total and unbound MPA, respectively. The assay utility was established in samples collected from five paediatric bone marrow transplant recipients who were receiving intravenous doses of mycophenolate mofetil. In these patients MPA concentrations ranged from 0.07 to 7.83 mg/L and unbound drug concentrations ranged from 2.1 to 107.5 microg/L. This method can be effectively applied to MPA pharmacokinetics in paediatric patients.  相似文献   

19.
A mixture of piracetam and vincamine was determined by 3 different methods. The first was the determination of piracetam and vincamine using the ratio-spectra first-derivative (DD1) spectrophotometric technique at 209 and 293 nm in concentration ranges of 10-45 and 2-14 microg/mL with mean recoveries of 99.22 +/- 0.72 and 99.67 +/- 0.79%, respectively. The second method was based on the resolution of the 2 components by bivariate calibration depending on a mathematic algorithm that provides simplicity and rapidity. The method depended on quantitative evaluation of the absorbencies at 210 and 225 nm in concentration ranges of 5-45 and 2-14 microg/mL, with mean recoveries of 100.33 +/- 0.54 and 100.44 +/- 0.98% for piracetam and vincamine, respectively. The third method was reversed-phase liquid chromatography using 0.05 M potassium dihydrogen phosphate-methanol (50 + 50, v/v) as the mobile phase, with the pH adjusted to 3.5 with phosphoric acid. The eluent was monitored at 215 nm in concentration ranges of 5-100 and 2-200 microg/mL, with mean recoveries of 99.62 +/- 0.67 and 99.32 +/- 0.85% for piracetam and vincamine, respectively. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparation. The methods retained their accuracy and precision when applying the standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.  相似文献   

20.
Genistein, the major isoflavone in soybeans, has been shown to have a wide range of effects. We used an HPLC-UV combined with microdialysis method to detect unbound genistein in rat blood, brain and bile. Genistein dialysates were eluted with a mobile phase containing acetonitrile-water (40:60, v/v, pH 3.5 adjusted by 0.1% acetic acid). Samples were separated using a phenyl (5 microm) column maintained at ambient temperature. The UV detector wavelength was set at 259 nm. The flow rate was 1.0 m/min. The limit of quantitation for genistein was 50 ng/ml. The in vitro recoveries of genistein were 31 +/- 1, 13 +/- 1 and 59 +/- 4% in microdialysis probes of blood, brain and bile, respectively (n = 4). Inter- and intra-assay accuracy and precision of the analysis were less than 10% in the concentration ranges of 0.05-5.0 microg/ml. A small ratio of genistein penetrates the blood-brain barrier (BBB) and goes through hepatobiliary excretion after genistein administration (10 or 30 mg/kg, i.v.). The brain-to-blood (AUC(brain)/AUC(blood)) and bile-to-blood (AUC(bile)/AUC(blood)) distribution ratios were 0.04 +/- 0.01 and 1.85 +/- 0.42, respectively for the dosage of genistein 30 mg/kg. After co-administration of cyclosporine, a P-glycoprotein (P-gp) inhibitor, the distribution ratios of genistein in brain and bile were not significantly altered. These results suggest that the BBB penetration and hepatobiliary excretion of genistein may not regulated by P-gp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号