首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
We report herein a molecular dynamics study of the main species involved in the hydroformylation of higher olefins promoted by cyclodextrins in 1-decene/water biphasic systems at a temperature of 350 K. The two liquids form a well-defined sharp interface of approximately 7 A width in the absence of solute; the decene molecules are generally oriented "parallel" to the interface where they display transient contacts with water. We first focused on rhodium complexes bearing water-soluble TPPTS(3-) ligands (where TPPTS(3-) represents tris(m-sulfonatophenyl)phosphine) involved in the early steps of the reaction. The most important finding concerned the surface activity of the "active" form of the catalyst [RhH(CO)(TPPTS)(2)](6-), the [RhH(CO)(2)(TPPTS)(2)](6-) complex, and the key reaction intermediate [RhH(CO)(TPPTS)(2)(decene)](6-) (with the olefin pi-coordinated to the metal center) which are adsorbed at the water side of the interface in spite of their -6 charge. The free TPPTS(3-) ligands themselves are also surface-active, whereas the -9 charged catalyst precursor [RhH(CO)(TPPTS)(3)](9-) prefers to be solubilized in water. The role of cyclodextrins was then investigated by performing simulations on 2,6-dimethyl-beta-cyclodextrin ("CD") and its inclusion complexes with the reactant (1-decene), a reaction product (undecanal), and the corresponding key reaction intermediate [RhH(CO)(TPPTS)(2)(decene)](6-) as guests; they were all shown to be surface-active and prefer the interface over the bulk aqueous phase. These results suggest that the biphasic hydroformylation of higher olefins takes place "right" at the interface and that the CDs promote the "meeting" of the olefin and the catalyst in this peculiar region of the solution by forming inclusion complexes "preorganized" for the reaction. Our results thus point to the importance of adsorption at the liquid/liquid interface in this important phase-transfer-catalyzed reaction.  相似文献   

2.
We report a molecular dynamics study of biphasic systems involved in the rhodium-catalyzed hydroformylation of 1-hexene in the 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid ([BMI][PF(6)] IL). We first describe the neat [BMI][PF(6)] interfaces with hexene (the substrate) and heptanal (the linear reaction product) as organic phases. The former interface is molecularly sharp with BMI+ cations preferentially oriented "perpendicular" (i.e., pointing their butyl chains toward the organic phase), whereas hexene molecules tend to be somewhat parallel to the interface. The interface with heptanal is approximately twice as broad, due to BMI+...O(heptanal) attractions, and the solvent molecules are disordered at the interface. No IL ions solubilize in the organic phase(s) whereas ca. 2-3 hexene or heptanal molecules diffused into the IL phase. The presence of the CO and H2 gases does not modify the nature of the hexene/IL interface, as these gases are mainly solubilized in the organic phase, respectively, as diluted species and in the form of a "gaseous" droplet. In the IL phase, one finds a few CO monomers, whereas the less soluble H2 molecules spend only transient excursions. We next simulate the phase separation of "randomly mixed" IL/hexene liquids with the [RhH(CO)L(3)] precatalyst as a solute, comparing the PPh(3) to the TPPTS(3-) ligands (L). The phases separate much more slowly than in the case of classical liquids, and the neutral complex with PPh(3) ligands solubilizes in the hexene phase, displaying loose dynamical contacts with the IL interface. This contrasts with the -9 charged [RhH(CO)(TPPTS)(3)](9-) complex that sits "immobilized" on the IL side of the interface and is mainly solvated by BMI+ cations. Finally, we characterize the solvation of -6 charged [RhH(CO)(TPPTS)(2)](6-), [RhH(CO)(2)(TPPTS)(2)](6-), and [RhH(CO)(TPPTS)(2)(hexene)](6-) complexes involved as reaction intermediates in the hydroformylation reaction and of the free TPPTS(3-) ligand itself in the bulk IL.  相似文献   

3.
新型离子液体介质中长链烯烃氢甲酰化反应   总被引:2,自引:0,他引:2  
合成和表征了离子液体[Rmim][p-CH3C6H4SO3](R=CH3(CH2)n—, n=3, 7, 11, 15), 并以所合成的离子液体为反应介质, 考察了水溶性铑膦络合物HRh(CO)(TPPTS)3[TPPTS: P(m-C6H4SO3Na)3]对长链烯烃氢甲酰化反应的催化性能. 结果表明, 离子液体[Rmim][p-CH3C6H4SO3]中R基团链长的变化对催化活性具有重要的影响;而在相同离子液体中, 氢甲酰化反应活性随着烯烃链长的增加明显下降. 与文献报道中广泛使用的离子液体[Bmim]BF4、[Bmim]PF6相比, 该催化体系对长链烯烃氢甲酰化反应具有更好的活性和化学选择性, 在3.0 MPa, 100 ℃的条件下, 1-己烯氢甲酰化反应转化频率(TOF)高达2736 h-1. 反应完成后, 水溶性铑膦络合物能很好地溶解在离子液体中, 与有机物自动分层, 催化剂的循环使用易于实现.  相似文献   

4.
考察了水溶性铑膦络合物RhCl(CO)(TPPTS)2(TPPTS为间-三苯基膦三磺酸钠)在水/有机两相体系中对不同单萜烯的氢甲酰化反应的催化性能.结果表明,添加表面活性剂对催化活性影响很大.在8.0 MPa,100℃的条件下,该催化体系对萜烯氢甲酰化反应具有较好的催化活性,月桂烯、莰烯和艹宁烯的转化率可分别达到92%,72%和86%.反应完成后,含水溶性铑膦络合物的水溶液与含产物的有机相分离方便,催化剂重复使用8次,其活性和选择性均未明显下降,易于实现催化剂的循环使用.  相似文献   

5.
研究了在阳离子表面活性剂存在下水/有机两相中水溶性铑配合物RhCI(CO)(TPPTS)2(TPPTS:P(m-C6H4SO3Na)3)催化双环戊二烯氢甲酰化反应,考察了反应温度、催化剂浓度、不同水溶性膦配体TPPTS和TPPDS(C5H5P(m-C6H4SO3Na)2),以及表面活性剂结构对催化反应的影响.结果表明,...  相似文献   

6.
制备了一系列铑配合物,并对其催化丁烯氢甲酰化的催化性能进行了研究.在1-丁烯的反应中,RhCl(PPh3)3和trans-RhCl(CO)(PPh3)2的反应速度很慢,而RhH(CO)(PPh3)3、Rh(CO)2(acac)和 Rh(CO)(acac)(PPh3)三者反应速度都很快.而不同丁烯原料氢甲酰化的反应速度也各不相同,反应速度依次为1-丁烯》2-丁烯》异丁烯.  相似文献   

7.
The two rhodium complexes [Rh(acac)(L(R))] (L(R)=(S,S)-5,11,17,23-tetra-tert-butyl-25,27-di(OR)-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene; 6: R=benzyl, 7: R=fluorenyl), each based on a hemispherical chelator forming a pocket about the metal centre upon chelation, are active in the hydroformylation of 1-octene and styrene. As expected for this family of diphosphanes, both complexes resulted in remarkably high selectivity towards the linear aldehyde in the hydroformylation of 1-octene (l/b≈15 for both complexes). Linear aldehyde selectivity was also observed when using styrene, but surprisingly only 6 displayed a marked preference for the linear product (l/b=12.4 (6) vs. 1.9 (7)). A detailed study of the structure of the complexes under CO or CO/H(2) in toluene was performed by high-pressure NMR (HP NMR) and FT-IR (HP-IR) spectroscopies. The spectroscopic data revealed that treatment of 6 with CO gave [Rh(acac)(CO)(η(1)-L(benzyl))] (8), in which the diphosphite behaves as a unidentate ligand. Subsequent addition of H(2) to the solution resulted in a well-defined chelate complex with the formula [RhH(CO)(2)(L(benzyl))] (9). Unlike 6, treatment of complex 7 with CO only led to ligand dissociation and concomitant formation of [Rh(acac)(CO)(2)], but upon addition of H(2) a chelate complex analogous to 9 was formed quantitatively. In both [RhH(CO)(2)(L(R))] complexes the diphosphite adopts the bis-equatorial coordination mode, a structural feature known to favour the formation of linear aldehydes. As revealed by variable-temperature NMR spectroscopy, these complexes show the typical fluxionality of trigonal bipyramidal [RhH(CO)(2)(diphosphane)] complexes. The lower linear selectivity of 7 versus 6 in the hydroformylation of styrene was assigned to steric effects, due to the pocket in which the catalysis takes place being less adapted to accommodate CO or larger olefins and, therefore, possibly leading to facile ligand decoordination. This interpretation was corroborated by an X-ray structure determination carried out for 7.  相似文献   

8.
两相催化体系中辛烯的氢甲酰化反应研究   总被引:7,自引:0,他引:7  
考察了反应温度、膦/铑化、表面活性剂种类及浓度、CO/H2压力比等因素对水溶性铑-膦配合物RhCI(CO)(TPPTS)2催化剂催化1-辛烯、2-辛烯氢甲酰化反应活性的影响,并选择出了优化的反应条件。研究结果表明,在该体系中表面活性剂的结果是影响RhCI(CO)(TPPTS)2催化2-辛烯转化率和选择性的重要原因,并对在两相体系2-辛烯氢甲酰化反应中表面活性剂十四烷基二甲基苄基氯化铵(BDAC)明显优于十六烷基三甲基溴化铵(CTAB)的原因进行了探讨。  相似文献   

9.
采用三苯基膦羰基氢化铑作为催化剂,进行1-丁烯氢甲酰化合成戊醛反应,主要考察温度、铑浓度、配体浓度、丁烯浓度、合成气中H2和CO分压等因素对反应速率的影响.动力学研究表明温度、Rh浓度、丁烯浓度和H2分压的增加均可提高反应速度,CO分压和配体量的增加使反应速度降低.给出了RhH(CO)(PPh3)3催化1-丁烯氢甲酰化的反应动力学方程,并采用非线性最小二乘法对模型进行参数估值,计算值与实验值具有较好的一致性.  相似文献   

10.
负载型水溶性铑膦配合物催化剂的结构和性能   总被引:3,自引:0,他引:3  
SiO2担载TPPTS(间-三苯基膦三磺酸钠盐)-Rh(acac)(CO)2制成的负载型水溶性催化剂进行1-己烯氢甲酰化催化反应时,引入适量水蒸气可显著提高催化活性.用魔角旋转固体核磁共振磷谱表征得到,在新制备的催化剂中,吸附于SiO2表面但未参与配位的TPPTS,约占总膦物种的70mol%以上,而位于δ=32.4处的表面配合物{Rh(CO)(TPPTS)2}膦物种量约为15mol%,其它膦10mol%左右.催化剂经干燥合成气在373K处理2h、或经湿合成气在较低温度(333K)下处理2h后,{Rh(CO)(TPPTS)2}的增加量仅约为10~15mol%,其它膦物种的变化量也较小,但催化剂经湿合成气于373K处理2h后,{Rh(CO)(TPPTS)2}的净增量大于40mol%;在工作态催化剂中,也观察到{Rh(CO)(TPPTS)2)大量生成、未配位TPPTS量减小;经43h反应运转后,催化剂活性下降,归属为{Rh(CO)(TPPTS)2)的磷谱峰宽化,揭示有部份配合物解络、部分TPPTS被氧化成OTTPTS.本研究结果证实,适量水可促进催化剂中具氢甲酰化催化活性的铑膦物种形成,提高活性,但随反应进行,配合物将逐渐解络、膦配体逐渐被氧化,从而使催化剂逐渐失活.  相似文献   

11.
 研究了水/有机两相体系中TPPTS(磺化三苯基膦)氧化为OTPPTS(氧化的TPPTS)对Rh/TPPTS催化烯烃氢甲酰化反应的影响. 结果表明,在己烯-1、辛烯-1和十二烯-1氢甲酰化反应中,当n(OTPPTS)/n(TPPTS)<1时,对催化剂体系性能的影响较小,但当n(OTPPTS)/n(TPPTS)>1时,将引起催化剂体系的活性、选择性和稳定性下降; 如果保持体系中TPPTS的含量一定,使n(TPPTS)/n(Rh)≥18,当n(OTPPTS)/n(Rh)=20时,则对催化剂体系性能的影响不明显. 这说明生成的OTPPTS不是铑催化剂的毒物. TPPTS氧化为OTPPTS致使铑催化剂的活性和生成醛的选择性下降, 是由于TPPTS浓度的降低导致n(TPPTS)/n(Rh)值过低,使催化循环中各活性物种的平衡发生变化及铑配合物的稳定性变差所造成的结果.  相似文献   

12.
The rhodium-phosphine complex catalyst Rh(CO)(acac)(PPh3)(Ⅰ) for 1-hexene hydroformylation was studied under the following reaction conditions: CO/H2=1(mole rate), pressure 1.0 MPa, temperature 25-120℃, by using the pressurized in-situ 1H NMR technique. Experimental results indicated that the formation of a rhodium hydride complex from (Ⅰ) began at room temperature and its amount increased with increasing of reaction temperature. This intermediate complex began to decompose at 100℃ and disapeared completely at 120℃. The intensity change of the proton signal was parallel to catalytical activity in hydroformylation of olefins. Under pure CO pressure the proton signal of Ph-H bond was not observed. There was a 0.2 ppm difference in proton chemical shifts of Rh-H bond under pure H2 pressure and under H2+CO pressure. The results showed that the rhodium-hydride carbonyl complex is the active intermediate in the industrial hydroformylation process.  相似文献   

13.
1‐Dodecene hydroformylation catalyzed by water soluble rhodium complex [RhCl(CO) (TPPTS)2] was studied in the presence of TTPTS [P(m‐C2H4SO3Na)3] and CTAB (cetyltrimethyl ammonium). The influence of reaction parameters was discussed in detail based on micelle effect in biphasic system. The modification for the microcircumstance of micelle interface was conducted by the introduction of a catalyst promoter TPPDS [PhP(m‐C2H4SO3Na)2] into the reaction solution. A synergistic effect between TPPDS and TPPTS on the regioselectivity of 1‐dodecene hydroformylation was observed. The selectivity of linear aldehyde in the products was so high as 95.7% at the molar ratio of [TPPDS]/[TPPTS] = 0.5.  相似文献   

14.
将水溶性铑-膦配合物Rhci(CO)(TPPTS)_2(TPPTS:P-(m-C_6H_4SO_3Na)_3)负载于扩孔硅胶上,制成负载水相催化剂(SAPC),在高压反应釜中研究其催化1-己烯氢甲酰化的性能。结果表明,催化剂的水含量对其活性影响很大,在一较窄的水含量范围内(25—35wt%),催化剂活性急剧增大,且存在一极大值,表现出水膜催化剂的特性。反应温度、总压和CO/H_2分压、Rh/P比的影响,与使用烃溶性能。三苯膦络合催化剂时有类似规律,溶剂的影响不明显,实验证明,SAPC具有良好催化活性,SiO_2上负载的铑配合物不会被原料和产物洗提而造成流失,有利于催化剂的稳定和重复使用。  相似文献   

15.
报道了水溶性铑膦配合物组成的复合催化体系催化1-十二烯氢甲酰化反应中,双子表面活性剂[二溴化-(N,N,N′,N′-四甲基)-N,N′-二(十六烷基)-乙二铵]形成胶束的助催化作用.结果表明,在水/有机两相中,双子表面活性剂比单链表面活性剂CTAB具有更好加速催化反应的作用,并使烯烃氢甲酰化的区域选择性显著提高.这归因于双子表面活性剂有较低的cmc,可形成更加紧密规整的胶束结构,有利于增溶在胶束中的烯烃与铑催化剂配位和生成正构醛.  相似文献   

16.
A study has been carried out on rhodium catalyst preforming when modified with the bulky tris(2,4-di-tert-butylphenyl) phosphite, P(Obtbp)(3). X-Ray crystal structure determinations of a tropolone-type precursor complex [Rh(TropBr(3))(CO){P(Obtbp)(3)}].P(Obtbp)(3).CH(3)COCH(3)(TropBr(3)= 3,5,7-tribromotropolonate) and the free P(Obtbp)(3) ligand are reported. Systematic in situ IR and NMR studies of the particular rhodium phosphite modified catalyst and its precursors have led to the identification of two distinct rhodium hydride species. A {(1)H,(31)P} HMBC NMR experiment afforded clarity on the (31)P NMR spectra observed under hydroformylation conditions. The species were identified as [HRh(CO)(3){P(Obtbp)(3)}] and [HRh(CO)(2){P(Obtbp)(3)}(2)]. Attention was also given to the rate of catalyst formation when starting from different rhodium precursors.  相似文献   

17.
The rate-determining step in the hydroformylation of 1-octene, catalysed by the rhodium-Xantphos catalyst system, was determined by using a combination of experimentally determined (1)H/(2)H and (12)C/(13)C kinetic isotope effects and a theoretical approach. From the rates of hydroformylation and deuterioformylation, a small (1)H/(2)H isotope effect of 1.2 was determined for the hydride moiety of the rhodium catalyst. (12)C/(13)C isotope effects of 1.012(1) and 1.012(3) for the alpha-carbon and beta-carbon atoms of 1-octene were determined, respectively. Both quantum mechanics/molecular mechanics (QM/MM) and full quantum mechanics calculations were carried out on the key catalytic steps, for "real-world" ligand systems, to clarify whether alkene coordination or hydride migration is the rate-determining step. Our calculations (21.4 kcal mol(-1)) quantitatively reproduce the experimental energy barrier for CO dissociation (20.1 kcal mol(-1)) starting at the (bisphosphane)RhH(CO)(2) resting state. The barrier for hydride migration lies 3.8 kcal mol(-1) higher than the barrier for CO dissociation (experimentally determined trend approximately 3 kcal mol(-1)). The computed (1)H/(2)H and (12)C/(13)C kinetic isotope effects corroborate the results of the energy analysis.  相似文献   

18.
The biphasic hydroformylation reaction of oct-1-ene, has been investigated by using the water-soluble dinuclear complex [Rh2(μ-StBu)2(CO)2(TPPTS)2] as precursor. Addition of ethanol as a cosolvent dramatically improved the yields but the good regioselectivity in linear aldehyde observed for neat oct-1-ene—water systems (97%) decreased to 83% (for 22% ethanol w/w). It is shown that the dinuclear framework cannot be maintained, that the mononuclear complex [RhH(CO)(TPPTS)3] is formed, and that thiol and significant amounts of [Rh2(μ-StBu)2(CO)4] move into the organic phase. This reaction from the dinuclear species requires the simultaneous presence of water and carbon monoxide. Introduction of the water-soluble thiol HS(CH2)3NMe2 in the bridging positions affords the complex [Rh2(μ-S(CH 2)3NHMe2)2(CO)2(TPPTS)2]Cl2 which can be kept in the aqueous hase but has a low level of catalytic activity.  相似文献   

19.
Hydrolysis and hydrogenation of [RhCl(tppms)3] (1) and trans-[RhCl(CO)(tppms)2] (2) was studied in aqueous solutions in a wide pH range (2 < pH < 11) in the presence of excess TPPMS (3-diphenylphosphinyl-benzenesulfonic acid sodium salt). In acidic solutions hydrogenation of 1 yields a mixture of cis-mer- and cis-fac-[RhClH2(tppms)3] (3a,b) while in strongly basic solutions [RhH(H2O)(tppms)3] (4) is obtained, the midpoint of the equilibrium between these hydride species being at pH 8.2. The paper gives the first successful 1H and 31P NMR spectroscopic characterization of a water soluble rhodium(I)-monohydride (4) bearing only monodentate phosphine ligands. Hydrolysis of 2 is negligible below pH 9 and its hydrogenation results in formation of [Rh(CO)H(tppms)3] (5), which is an analogue to the well known and industrially used hydroformylation catalyst [Rh(CO)H(tppts)3] (6) (TPPTS = 3,3',3'-phosphinetriyltris(benzenesulfonic acid) trisodium salt). It was shown by pH-potentiometric measurements that formation of 5 is strongly pH dependent in the pH 5-9 range, this gives an explanation for the observed but previously unexplained pH dependence of several hydroformylation reactions. Conversely, the effect of pH on the rate of hydrogenation of maleic and fumaric acid catalyzed by 1 in the 2 < pH < 7 range can be adequately described by considering solely the changes in the ionization state of these substrates. All these results warrant the use of buffered (pH-controlled) solutions for aqueous organometallic catalysis.  相似文献   

20.
The complexes RhH(CO)L3, where L = PPh3, P(m-C6H4SO3Na)3 (TPPTS), and (C6H5)2P(m-C6H4SO3Na) (TPPMS) were used as catalyst precursors for a comparative study of the catalytic hydroformylation of several C6 alkenes and alkene mixtures under moderate reaction conditions in homogeneous (PPh3) and aqueous-biphasic (TPPTS, TPPMS) media. The biphasic systems are efficient for the hydroformylation of hex-1-ene, 2,3-dimethyl-1-butene, styrene, cyclohexene, and mixtures thereof, in water/n-heptane at 80 °C. The main problem associated with these catalysts is their tendency to promote alkene isomerization if the effective syngas concentration in the liquid phases is low, but this side-reaction can be suppressed by using higher CO/H2 pressures (54 atm). The selectivity of both water-soluble catalysts for linear products of hex-1-ene and for branched products of styrene is modest in comparison with the homogeneous system, which may limit their utility for classical oxo uses, but this is not a disadvantage for other interesting applications related to the hydroformylation of alkene mixtures and particularly to naphtha upgrading where linear and branched products are equally useful. The catalysts can be recycled without significant loss of activity and are resistant to the presence of benzothiophene in the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号