首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the ligand N-phenyl-1,2-benzenediamine (N-phenyl-o-phenylenediamine), H2[L(PDI)], in dry acetonitrile with [FeIII(dmf)6](ClO4)3 (dmf = N,N-dimethylformamide) affords the dimer (mu-NH,NH)[FeIII(L(ISQ))(L(PDI))]2 (1), where (L(ISQ))*- represents the pi radical monoanion N-phenyl-o-diiminobenzosemiquinonate and (L(PDI))2- is its one-electron-reduced, closed-shell form. Complex 1 possesses a diamagnetic ground-state St = 0. Addition reactions of tri-n-butylphosphane, tert-butyl isocyanide, cyclohexyl isocyanide, 4,5-diphenylimidazole, and 4-(1-phenylpentyl)pyridine with 1 in acetonitrile or toluene yields [FeII(L(ISQ))2(PBu3)] (2), [Fe(II)(L(ISQ))2(CN-tBu)] (4), [FeII(L(ISQ))2(CNCy)] (5), [FeIII(L(ISQ))2(Ph2Im)] (6), and [FeIII(L(ISQ))(L(PDI))(BuPhCH-py)].BuPhCH-py (7). Oxidation of 1 with iodine affords [FeIII(L(ISQ))2I] (3), and oxidation of 2 with ferrocenium hexafluorophosphate yields [FeIII(L(ISQ))2(PBu3)](PF6) (2ox). The structures of complexes 2, 2ox, 3, 5, 6, and 7 have been determined by X-ray crystallography at 100(2) K. Magnetic susceptibility measurements and EPR, UV-vis, and M?ssbauer spectroscopy have established that mononuclear complexes containing the [FeII(L(ISQ))2X] chromophore (2, 4, 5) are diamagnetic (St = 0) whereas those with an [FeIII(L(ISQ))2X]n chromophore (3, 2(ox), 6) are paramagnetic (St = 1/2) and those with an [FeIII(L(ISQ))(L(PDI))X] chromophore (7) possess an St = 1 ground state. It is established that all ferric species have an intrinsic intermediate spin (SFe = 3/2) which is intramolecularly antiferromagnetically coupled to one or two (L(ISQ))*- ligand radicals yielding an St = 1 (7) or St = 1/2 (2ox, 3, 6) ground state, respectively. In the ferrous complexes 2, 4, and 5 the intrinsic spin at the iron ion is either low spin (SFe = 0) or intermediate spin (SFe = 1). Antiferromagnetic coupling between two radicals (L(ISQ))*- or, alternatively, between the intermediate spin ferrous ion and two radicals yields then the observed diamagnetic ground state. In 1 two [FeIII(L(ISQ))(L(PDI))] halves with S = 1 couple antiferromagnetically affording an St = 0 ground state.  相似文献   

2.
Crystalline purple [PPh4][FeIIIL2] (1), where L2- represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2L and FeBr2 (2:1) in acetonitrile with excess NEt3, careful, brief exposure of the solution to air, and addition of [PPh4]Br. The monoanion has been shown by X-ray crystallography to be square planar. The oxidation of 1 with 1 equiv of iodine produces the neutral species [FeI(L*)2]0 (2) where (L*)1- represents the one-electron oxidized pi radical anion of L2-. The reaction of H2Land PtCl2 (2:1) and NEt3 in CH3CN in the presence of air produced green, crystalline [PtII(L*)2] (3). From temperature dependent(2-300 K) magnetic susceptibility measurements, it was established that 1 possesses a central intermediate spin ferric ion (SFe ) 3/2), whereas neutral 2 has a doublet ground state (St ) 1/2) comprising an intermediate spin ferric ion coupled antiferromagnetically to two ligand pi radicals (L*)1- (Srad ) 1/2). Complex 3 is diamagnetic. Almeida et al.'s complexes in ref 1, [N(n-Bu)4][FeIII(qdt)2] (A), and [PPh4]2[FeIII2(qdt)4] (B), have been revisited. It is shown here that the square planar anion in mononuclear [FeIII(qdt)2]- also possesses an SFe ) 3/2 ground state. The zero-field M?ssbauer spectra of 1, 2, A, and B have been recorded and the molecular and electronic structures of all mononuclear iron species have been calculated by density functional theoretical methods.It is shown that the S ) 3/2 ground state in 1 and A is lower in energy by 8.5 and 16.6 kcal mol(-1), respectively,than the S ) 1/2 state.  相似文献   

3.
Two new iron(III) complexes, Fe(III)(LF*)3 (1) and FeIII(L(t-Bu*))3 (2), of remote substituted o-aminophenol-based ligands are reported; complexes 1 and 2 contain three O,N-coordinated o-iminobenzosemiquinonate(1-) radical anions with ferric centers in high-spin and low-spin configurations. The crystal structures of 1 and 2 were determined by X-ray diffraction at 100 and 293 K, and the electronic structures were established by various physical methods including M?ssbauer (4-290 K) and variable-temperature (2-290 K) susceptibility measurements. Electrochemical measurements (cyclic and square-wave voltammetry) indicate primarily ligand-centered redox processes. Complex 1, with the more electron-withdrawing fluoro substituents, retains the high-spin character of the ferric ion throughout the temperature range studied (2-290 K) and exhibits, as expected, strong antiferromagnetic coupling operating between three radicals (SR = 1/2) and the high-spin Fe(III) center (SFe = 5/2) yielding an St = 1 as the ground state. In contrast, the occurrence of a thermally induced spin crossover process (SFe = 5/2 <--> SFe = 1/2) is observed for complex 2 FeIII(L(t-Bu*))3, in which more electron donating tert-butyl substituents in the ligand are present. A rationale for the control of the electronic state of ferric ions in 2 together with spin-coupling schemes for 1 and 2 are provided.  相似文献   

4.
The electronic structures of four members of the electron-transfer series [Fe2(1L)4]n (n = 2-, 1-, 0, 1+) have been elucidated in some detail by electronic absorption, IR, X-band electron paramagnetic resonance (EPR), and M?ssbauer spectroscopies where (1L)(2-) represents the ligand 1,2-bis(4-tert-butylphenyl)-1,2-ethylenedithiolate(2-) and (1L*)- is its pi-radical monoanion. It is conclusively shown that all redox processes are ligand-centered and that high-valent iron(IV) is not accessible. The following complexes have been synthesized: [FeIII2(1L*)2(1L)2]0 (1), [FeIII2(2L*)2(2L)2].2CH2Cl2 (1') where (2L)(2-) is 1,2-bis(p-tolyl)-1,2-ethylenedithiolate(2-) and (2L*)- represents its pi-radical monoanion, [Cp2Co][FeIII2(1L*))(1L)3].4(toluene).0.5Et2O (2), and [Cp2Co]2[FeIII2(1L)4].2(toluene) (3). The crystal structures of 1' and 2 have been determined by single-crystal X-ray crystallography at 100 K. The ground states of complexes have been determined by temperature-dependent magnetic susceptibility measurements and EPR spectroscopy: 1' and 1 are diamagnetic (S(t) = 0); 2 (S(t) = 1/2); 3 (S(t) = 0); the monocation [Fe(III)2(1L*)3(1L)]+ possesses an S(t) = 1/2 ground state (S(t) = total spin ground state of dinuclear species). All species contain pairs of intermediate-spin ferric ions (S(Fe) = 3/2), which are strongly antiferromagnetically coupled (H = -2JS(1).S(2), where S1 = S2 = 3/2 and J = approximately -250 cm(-1)).  相似文献   

5.
A series of mononuclear square-based pyramidal complexes of iron containing two 1,2-diaryl-ethylene-1,2-dithiolate ligands in various oxidation levels has been synthesized. The reaction of the dinuclear species [Fe(III)2(1L*)2(1L)2]0, where (1L)2- is the closed shell di-(4-tert-butylphenyl)-1,2-ethylenedithiolate dianion and (1L*)1- is its one-electron-oxidized pi-radical monoanion, with [N(n-Bu)4]CN in toluene yields dark green crystals of mononuclear [N(n-Bu)4][Fe(II)(1L*)2(CN)] (1). The oxidation of 1 with ferrocenium hexafluorophosphate yields blue [Fe(III)(1L*)2(CN)] (1ox), and analogously, a reduction with [Cp2Co] yields [Cp2Co][N(n-Bu)4][Fe(II)(1L*)(1L)(CN)] (1red); oxidation of the neutral dimer with iodine gives [Fe(III)(1L*)2I] (2). The dimer reacts with the phosphite P(OCH3)3 to yield [Fe(II)(1L*)2{P(OCH3)3}] (3), and [Fe(III)2(3L*)2(3L)2] reacts with P(OC6H5)3 to give [Fe(II)(3L*)2{P(OC6H5)3}] (4), where (3L)2- represents 1,2-diphenyl-1,2-ethylenedithiolate(2-). Both 3 and 4 were electrochemically one-electron oxidized to the monocations 3ox and 4ox and reduced to the monoanions 3red and 4red. The structures of 1 and 4 have been determined by X-ray crystallography. All compounds have been studied by magnetic susceptibility measurements, X-band EPR, UV-vis, IR, and M?ssbauer spectroscopies. The following five-coordinate chromophores have been identified: (a) [Fe(III)(L*)2X]n, X = CN-, I- (n = 0) (1ox, 2); X = P(OR)3 (n = 1+) )3ox, 4ox) with St = 1/2, SFe = 3/2; (b) [Fe(II)(L*)2X]n, X = CN-, (n = 1-) (1); X = P(OR)3 (n = 0) (3, 4) with St = SFe = 0; (c) [Fe(II)(L*)(L)X]n <--> [Fe(II)(L)(L*)X]n, X = CN- (n = 2-) (1red); X = P(OR)3 (n = 1-) (3red, 4red) with St = 1/2, SFe = 0 (or 1). Complex 1ox displays spin crossover behavior: St = 1/2 <--> St = 3/2 with intrinsic spin-state change SFe = 3/2 <--> SFe = 5/2. The electronic structures of 1 and 1(ox) have been established by density functional theoretical calculations: [Fe(II)(1L*)2(CN)]1- (SFe = 0, St = 0) and [Fe(III)(1L*)2(CN)]0 (SFe = 3/2, St = 1/2).  相似文献   

6.
7.
The reaction of 3 equiv of the ligand 2-mercapto-3,5-di-tert-butylaniline, H2[LN,S], or 3,5-di-tert-butyl-1,2-benzenedithiol, H2[LS,S], with 1 equiv of [MoO2(acac)2] or WCl6 (acac=acetonylacetate(1-)) in methanol or CCl4 afforded the diamagnetic neutral complexes [MoV(LN,S)2(L*N,S)]0 (1), [MoV(LS,S)2(L*S,S)] (2), and [WV(LS,S)2(L*S,S)] (3), where (L*N,S)- and (L*S,S)- represent monoanionic pi-radical ligands (Srad=1/2), which are the one-electron oxidized forms of the corresponding closed-shell dianions (LN,S)2- and (LS,S)2-. Complexes 1-3 are trigonal-prismatic members of the electron-transfer series [ML3]z (z=0, 1-, 2-). Reaction of 2 and 3 with [N(n-Bu)4](SH) in CH2Cl2 under anaerobic conditions afforded paramagnetic crystalline [N(n-Bu)4][MoV(LS,S)3] (4) and [N(n-Bu)4][WV(LS,S)3] (5). Complexes 1-5 have been characterized by X-ray crystallography. S K-edge X-ray absorption and infrared spectroscopy prove that a pi-radical ligand (L*S,S)- is present in neutral 2 and 3, whereas the monoanions [MV(LS,S)3]- contain only closed-shell dianionic ligands. These neutral species have previously been incorrectly described as [MVI(L)3]0 complexes with a MoVI or WVI (d0) central metal ion; they are, in fact MV (d1) (M=Mo, W) species: [MoV(LS,S)2(L*S,S)] and [WV(LS,S)2(L*S,S)] with a diamagnetic ground state St=0, which is generated by intramolecular, antiferromagnetic coupling between the MV (d1) central ion (SM=1/2) and a ligand pi radical (L*S,S)- (Srad=1/2).  相似文献   

8.
The potentially tridentate ligand 2-(8-aminoquinolino)-4,6-di-tert-butylphenol, H[1LAP], has been synthesized and its coordination chemistry with Mn(IV), Fe(III), and Co(III) has been investigated by X-ray crystallography, electro- and magnetochemistry, electronic, Mossbauer and EPR spectroscopies. The following complexes have been prepared [MnIV(1LAP-H)2](1), St=3/2; [MnIV(1LAP-H)(1LISQ)](PF6).CH2Cl2 (2), St= 1; [FeIII(1LISQ)2](ClO4).0.5H2O (3), St=1/2; [FeIII(1LISQ)(3,5-dtcat)]2 (4), St= 0; K[CoII(1LISQ)(1LIBQ)](NCS)2 (5), St= 1; [CoIII2(NCS)2(1LAP-H)2(AQ)] (6), St=0, where (1LAP-H)2- corresponds to the o-iminophenolate(2-) dianion, (1LISQ)- is the o-iminobenzosemiquinonate(1-) pi radical derivative of the ligand H[1LAP], (1LIBQ)0 is the neutral iminobenzoquinone ligand, and 3,5-dtcat is 3,5-di-tert-butylcatecholate(2-) and N,N-coordinated (AQ) is 8-aminoquinoline. It is shown that the pi radical anions in 2, 3, 4 couple antiferromagnetically to the respective paramagnetic metal ion. Complex 4 is a dinuclear neutral complex with weak antiferromagnetic coupling between two [FeIII1LISQ)(3,5-dtcat)] halves. The asymmetrically ligated complex 6 contains two bridging (1LAP-H)2- ligands and two diamagnetic CoIII ions. In contrast, 5 is correctly described as [CoII(1LISQ)(1LIBQ)]+ rather than [CoIII(1LISQ)2]+ since it possesses a temperature-independent magnetic moment of mueff(10-298 K)= 3.0 muB indicating an St=1 ground state which is attained via strong antiferromagnetic coupling (|J> or =200 cm(-1)) between a high spin cobalt(II) ion (SCo=3/2) and a single pi radical anion (Srad=1/2).  相似文献   

9.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

10.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

11.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

12.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

13.
The electronic structures of chromium and vanadium centers coordinated by three reduced 1,2-diketones have been elucidated by using density functional theory (DFT) calculations and a host of physical methods: X-ray crystallography; cyclic voltammetry; ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopy; and magnetic susceptibility measurements. The metal center in octahedral [CrIII(L*)3]0 (1), a CrIII (d3) ion is coupled antiferromagnetically to three monoanionic ligand pi-radicals affording an S ) 0 ground state. In contrast, Na2(Et2O)2[VIV(LRed)3] (2) (S ) 1/2), possesses a central VIV (d1) ion O,OE-coordinated to three closed-shell, doubly reduced ligands which in turn are coordinated by two Na cations enforcing a trigonal prismatic geometry at the vanadium center. 2 can be oxidized electrochemically by one and two electrons generating a monoanion, [V(L)3]1-, and a neutral species, [V(L)3]0, respectively. DFT calculations atthe B3LYP level show that the one-electron oxidized product contains an octahedral VIV ion coupled antiferromagnetically to one monoanionic ligand pi-radical [VIV(L*)(LRed)2]1- (S ) 0). In contrast, the two-electron oxidized product contains a VIII ion coupled antiferromagnetically to three ligand pi-radicals in an octahedral field[VIII(L*)3]0 (S ) 1/2).  相似文献   

14.
15.
A series of FeIII complexes of stoichiometry [FeLX3].nH2O have been synthesized, where X=Cl–, HCO–2 and L is a flexible bidentate ligand, 1,3(bis-benzimidazolyl) propane and 1,4(bis-benzimidazolyl)butane. Mössbauer data reveals that the isomer shift values lie in the range typically observed for high spin FeIII complexes, while the slightly large quadrupole splitting parameter indicates a rhombically distorted FeIII centre. Cyclic voltammetric studies reveal that the E1/2 for the FeIII/FeII couple for the formate complex shifts more cathodically than for the chloride complex; implying that HCO–2 is more effective at lowering the Lewis acidity of the FeIII centre.  相似文献   

16.
Areneruthenium(II) molecular complexes of the formula [Ru(arene)(Q)Cl], containing diverse 4-acyl-5-pyrazolonate ligands Q with arene = cymene or benzene, have been synthesized by the interaction of HQ and [Ru(arene)Cl(micro-Cl)]2 dimers in methanol in the presence of sodium methoxide. The dinuclear compound [{Ru(cymene)Cl}2Q4Q] (H2Q4Q = bis(4-(1-phenyl-3-methyl-5-pyrazolone)dioxohexane), existing in the RRuSRu (meso form), has been prepared similarly. [Ru(cymene)(Q)Cl] reacts with sodium azide in acetone, affording [Ru(cymene)(Q)N3] derivatives, where Cl- has been replaced by N3-. The reactivity of [Ru(cymene)(Q)Cl] has also been explored toward monodentate donor ligands L (L = triphenylphosphine, 1-methylimidazole, or 1-methyl-2-mercaptoimidazole) and exo-bidentate ditopic donor ligands L-L (L-L = 4,4'-bipyridine or bis(diphenylphosphino)propane) in the presence of silver salts AgX (X = SO3CF3 or ClO4), new ionic mononuclear complexes of the formula [Ru(cymene)(Q)L]X, and ionic dinuclear complexes of the formula [{Ru(cymene)(Q)}2L-L]X2 being obtained. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. Their redox properties have been investigated by cyclic voltammetry and controlled potential electrolysis, which, on the basis of their measured RuII/III reversible oxidation potentials, have allowed the ordering of the bidentate acylpyrazolonate ligands according to their electron-donor character and are indicative of a small dependence of the HOMO energy upon the change of the monodentate ligand. This is accounted for by DFT calculations, which show a relevant contribution of acylpyrazolonate ligand orbitals to the HOMOs, whereas that from the monodentate ligand is minor.  相似文献   

17.
Three isostructural disklike heptanuclear FeIII compounds of the general formula [FeIII7(mu3-O)3(L)3(mu-O2CCMe3)6(eta1-O2CCMe3)3(H2O)3], where L represents a di- or triethanolamine moiety, display a three-blade propeller topology, with the central Fe atom representing the axle or axis of the propeller. This motif corresponds to the theoretical model of a frustrated Heisenberg star, which is one of the very few solvable models in the area of frustrated quantum-spin systems and can, furthermore, be converted to an octanuclear cage for the case where L is triethanolamine to give [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(N3)3].1/2MeCN.1/2H2O or [FeIII8(mu4O)3(mu4-tea)(teaH)3(O2CCMe3)6(SCN)3].2MeCN when treated with excess NaN3 or NH4SCN, respectively. The core structure is formally derived from that of the heptanuclear compounds by the replacement of the three aqua ligands by an {Fe(tea)} moiety, so that the 3-fold axis of the propeller is now defined by two central FeIII atoms. Magnetic studies on two of the heptanulcear compounds established unequivocally S = 5/2 spin ground state for these complexes, consistent with overall antiferromagnetic interactions between the constituent FeIII ions.  相似文献   

18.
通过三核铁盐[Fe3O(O2CCH3)6(H2O)3]C1在吡啶溶液中水解聚合得到铁氧簇合物[Fe11O6(OH)6(O2CCH3)15](C5H5N)6。晶体结构表明11个铁离子(Ⅲ)中6个位于扭曲的三棱柱的顶点上,其余5个分别位于三棱柱的每个面之外。铁离子(Ⅲ)之间以氧桥或者羟基氧桥相连。变温磁化率证实铁离子(Ⅲ)之间是反铁磁耦合的。  相似文献   

19.
A new family of ruthenium complexes of general formula [Ru(DIP)2(L2)]2+, where DIP = 4,7-diphenyl-1,10-phenanthroline, a bidentate ligand with an extended aromatic system, was prepared and fully characterized. When L is a monodentate ligand, the following complexes were obtained: L = CF3SO3(-1) (2), CH3CN (3), and MeOH (4). When L2 is a bidentate ligand, the compounds [Ru(DIP)2(Hcmbpy)][Cl]2 (5) and [Ru(DIP)2(H2dcbpy)][Cl]2 (6) were prepared (Hcmbpy = 4-carboxy-4'-methyl-2,2-bipyridine, H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine). Complex [Ru(DIP)2(MeOH)2][OTf]2 (4) displayed a trans configuration of the DIP ligands, which is rare for octahedral complexes featuring DIP bidentate ligands. DFT calculations carried out on 4 showed that the cis isomer is more stable by 12.2 kcal/mol relative to the trans species. The solution behaviors of monocarboxylic complex [Ru(DIP)2(Hcmbpy)][Cl]2 (5) and dicarboxylic complex [Ru(DIP)2(H2dcbpy)][Cl]2 (6) were investigated by 1H NMR spectroscopy. VT-NMR, concentration dependence, and reaction with NaOD allowed us to suggest that aggregation of the cationic species in solution, especially for 6, originates mainly from hydrogen bonding interactions.  相似文献   

20.
The novel mononuclear PPh4-fac-[FeIII[HB(pz)3](CN)3]*H2O (1) [PPh4+= tetraphenylphosphonium cation; (HB(pz)3)- = hydrotris(1-pyrazolyl)borate] and tetranuclear fac-[[FeIII[HB(pz)3](CN)2(mu-CN)]3FeIII(H2O)3]*6H2O (2) have been prepared and characterized by X-ray diffraction analysis. Crystal data for compound 1: monoclinic, space group P21/c, a = 9.575(3) A, b = 21.984(4) A, c = 16.863(3) A, beta = 100.34(2) degrees, U = 3486(1) A3, Z = 4. Crystal data for compound 2: orthorhombic, space group Pnam, a = 14.084(3) A, b = 14.799(4) A, c = 25.725(5) A, U = 5362(2) A3, Z = 4. Compound 1 is a low-spin iron(III) compound with three cyanide ligands in fac arrangement and a tridentate pyrazolylborate ligand building a distorted octahedral environment around the iron atom. Compound 2 is the first example of a molecular species containing three peripheral low-spin iron(III) ions linked to a central high-spin iron(III) cation by single cyanide bridges, the anion of 1 acting as a monodentate ligand in 2. Variable-temperature magnetic susceptibility measurements of 2 reveal the occurrence of a significant ferromagnetic coupling between the three peripheral low-spin iron(III) centers and the central high-spin iron(III) ion cations leading to a low-lying nonet spin state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号