首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
董秀婷  张文  赵颂  刘新磊  王宇新 《化学进展》2021,33(12):2173-2187
金属有机骨架材料(MOFs)是由有机配体与金属离子(簇)配位而成的有序杂化多孔框架晶体材料,具有比表面积高、密度低、孔结构可调、配体可设计及易修饰等特性,已广泛应用于分离、催化、传感和药物递送等研究领域。MOFs本身以粉体形式存在,在实际应用中不易于加工处理和回收再利用,甚至会导致粉体污染。因此对MOFs粉末进行复合成型,制备成复合颗粒或者膜材料,有利于推进其工业应用。本文按照MOFs制备和成型的先后顺序,对MOFs复合微珠、薄膜和混合基质膜成型体的制备方法进行综述,对推进MOFs成型体的大规模制备以及开发新的MOFs成型方法提供技术参考。  相似文献   

2.
金属有机框架化合物(MOF),又称多孔性配位聚合物,是有机配体与金属离子自组装而成的一类新型有机-无机杂化多孔材料,是纳米材料的重要组成部分。与其他多孔材料相比,MOFs具有较大的比表面积、高的孔隙率以及结构和性质可调等特性,使其在非均相催化领域具有良好的应用前景。本文首先对MOFs催化的背景进行简述,然后对近年来报道的MOFs用于有机分子催化转化反应的进展进行了综述及展望,以期为MOFs催化有机反应的设计和开发提供参考。  相似文献   

3.
金属-有机框架材料(metal-organic frameworks,MOFs)是一类由金属离子或金属团簇与有机配体通过配位键连接形成的具有周期性网络结构的多孔配位聚合物。这类材料通常具有孔道规整、比表面积大、孔隙率高、结构可设计及孔壁易修饰等特点,诸多的优点使得MOFs的研究从配位化学跨越到多个学科领域,成为当前多学科交叉前沿热点之一。近来的研究发现,以MOFs为前驱体碳化后制得的碳材料可保留MOFs的大比表面积和多孔结构,同时可以实现均匀的杂原子(如N、P、S、B等)掺杂,而且通过选择合适的MOFs前驱体可调控产物的组成和形貌尺寸,这些显著的结构特征使其具备了成为高性能功能性材料的潜力。最近,以MOFs为模板或前驱体制备的中空碳材料引起了人们的广泛关注,这主要是因为中空结构可有效缓解材料在电化学过程中产生的体积变化及受到的冲击,而且中空结构可暴露出更多的活性位点,具有快速的传质过程,使得材料发挥出最优性能,故而此类材料可被用在二次电池、电容器、电催化等多种电化学器件和多个领域中。基于此,本文综述了MOFs衍生的中空碳材料在储能器件及电催化领域的研究进展,主要包括锂离子电池、锂硫/硒电池、钠离子电池、超级电容器、电催化氧还原等领域,并对这类材料当前面临的挑战及未来的发展趋势进行了阐述。  相似文献   

4.
金属有机框架(Metal-Organic Frameworks)是由金属离子或簇与有机配体通过配位键形成的具有孔洞结构的新一代晶态多孔材料,是近20年来配位化学领域的研究热点。作为新型多功能材料,MOFs具有高孔隙率、低密度、大比表面积、孔径可调、拓扑结构多样和可裁剪等优点,广泛应用于各种领域。尽管MOFs有许多优点,但是大多数MOFs材料的水和化学稳定性相对较差,在恶劣条件下结构无法保持,极大限制了它们的实际应用。因此,化学稳定的MOFs材料具有更大的应用前景。近年来,研究人员在提高MOFs化学稳定性方面进行了大量的探索,发展了一些非常好的方法合成化学稳定的MOFs材料。本文主要综述了近五年来化学稳定MOFs材料合成的最新研究进展。  相似文献   

5.
金属有机框架材料(Metal Organic Frameworks, MOFs)是近二十年来发展迅速的一类以金属离子为中心、有机物为配体的新型自组装骨架材料,由于其具有多孔性、大比表面积、结构与功能的多样性等特点而被广泛研究。基于这些特性,MOFs材料在气体的吸附与分离、催化等领域具有广阔的应用前景。材料研究的第一步是材料的制备与合成,因此,对于MOFs制备方法的研究备受关注。本文综述了近年来新兴MOFs材料的制备方法,主要可分为"由下至上"法和"由上至下"法两大类,并对其发展趋势进行了展望。  相似文献   

6.
制备了一种新型的发色团分子,实际是由普通发色团分子与β-环糊精形成的超分子包合物.其中的普通发色团分子被设计为哑铃型,并且哑铃形的一边在形成包合物后再完成,使形成的超分子包合物不发生解包合.包合物中β-环糊精对发色团分子的保护可以完全阻止发色团分子的聚集,减弱了材料中发色团分子间的静电相互作用.这种利用超分子包合物对发色团分子的修饰方法可以提高极化过程的效率,从而增加材料的电光活性。  相似文献   

7.
盘盈滢  胡茜  林晓明  许旋  罗一帆 《化学通报》2020,83(10):883-890
金属-有机骨架(MOFs)材料具有比表面积较大、孔径可调、制备容易、结构与功能多样性等优势,被广泛应用于电化学能源转化与储存领域。其中独特的核壳结构材料由于表面修饰的作用往往更能表现出内核与壳层之间的协同作用。本文介绍了核壳结构MOFs作为锂离子电池负极材料的发展现状,并重点综述其衍生物(多孔碳材料、金属氧化物、金属硫/硒化物以及金属/金属氧化物)的制备方法以及在锂离子电池负极中的应用。MOFs经高温煅烧或改变化学反应条件可制备出结构可调的无机电极材料并表现出更优异的电化学性能。最后总结了核壳结构MOFs材料作为锂电负极材料存在的问题和挑战,并提出可能的解决途径和未来的应用前景。  相似文献   

8.
金属有机骨架(MOFs)材料因其可设计的结构以及灵活可控的配位模式,在三阶非线性光学(NLO)领域引起了广泛的关注。与液体分散状态相比,MOFs在固体状态下的三阶NLO性能更为重要,这不仅可以深入了解MOFs本身所固有的光学性能,还有助于实现MOFs在光学器件中的实际应用。然而,由于散射的存在和透光率的限制,单独的MOFs材料难以直接实现固体状态下的三阶NLO性能研究,将MOFs制备成具有较好光学透过性的薄膜是研究其NLO性能最为可行的一种策略。MOFs薄膜不仅很好地继承了MOFs所固有的三阶NLO性能,而且还结合了薄膜的高透光率以及灵活的机械性能。基于此,本文分析总结了MOFs薄膜的制备方法及其NLO性能研究方面的相关工作,并根据目前MOFs薄膜在三阶NLO性能方面的研究现状对其未来发展予以了展望。  相似文献   

9.
金属有机骨架(MOFs)材料因其可设计的结构以及灵活可控的配位模式,在三阶非线性光学(NLO)领域引起了广泛的关注。与液体分散状态相比,MOFs在固体状态下的三阶NLO性能更为重要,这不仅可以深入了解MOFs本身所固有的光学性能,还有助于实现MOFs在光学器件中的实际应用。然而,由于散射的存在和透光率的限制,单独的MOFs材料难以直接实现固体状态下的三阶NLO性能研究,将MOFs制备成具有较好光学透过性的薄膜是研究其NLO性能最为可行的一种策略。MOFs薄膜不仅很好地继承了MOFs所固有的三阶NLO性能,而且还结合了薄膜的高透光率以及灵活的机械性能。基于此,本文分析总结了MOFs薄膜的制备方法及其NLO性能研究方面的相关工作,并根据目前MOFs薄膜在三阶NLO性能方面的研究现状对其未来发展予以了展望。  相似文献   

10.
纳米酶是一类具有类酶活性的纳米材料,在分析化学和疾病诊疗领域具有良好的发展潜力。金属有机框架(MOFs)材料是由金属节点和有机配体形成的多孔晶体材料,其结构与天然酶有一定的相似性。目前,研究者已经开发了多种基于MOFs的纳米酶,包括具有类过氧化物酶、类氧化酶、类超氧化物歧化酶和类水解酶活性的纳米酶等,并显示出广阔的应用前景。本文根据材料的结构特点,将基于MOFs的纳米酶分为原始MOFs、化学修饰MOFs、MOFs复合材料和MOFs衍生物4类,介绍了这4类纳米酶制备的基本原理与最新研究进展。在此基础上,根据比色传感、荧光传感和电化学传感等分析策略,综述了MOFs基纳米酶在生物分析方面的研究和应用进展,讨论了其在实际应用中所面临的挑战和未来的发展趋势。  相似文献   

11.
金属有机框架(MOFs)是由金属离子或金属簇与有机配体通过配位作用自组装形成的一类新型多孔材料. MOFs具有独特的拓扑结构、丰富的孔隙结构、可调的孔道尺寸、巨大的比表面积以及灵活的表面修饰等特征,是色谱分离领域颇受关注的一类新型固定相. 综述了近几年MOFs材料作为固定相在气相色谱、液相色谱及手性拆分等领域应用的研究进展,展现MOFs材料在色谱分离领域的优异性能和应用潜力,并对MOFs材料在色谱固定相领域今后的发展进行了展望.  相似文献   

12.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium‐ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

13.
金属-有机框架(MOFs)材料是由金属簇节点或金属离子与有机配体连接而成的典型的无机-有机杂合物, 作为一类新兴的无机多孔晶态材料, MOFs因具有高度有序的多孔性、 结构可裁剪性、 高比表面积及灵活多变的骨架类型等优点而在工业合成、 能源开发、 环境治理和生物制药等领域展现出广阔的应用前景. 本文从氢能源的开发利用出发, 总结了近年来MOFs基纳米复合材料在催化化学制氢方面的研究进展. 讨论了常见的含氢量高的化学储氢材料, 包括氨硼烷、 甲酸和水合肼等; 催化材料主要有单一MOFs、 MOF基贵金属和非贵金属复合材料及MOF基衍生材料等. 最后, 对MOF基复合材料在液相催化化学储氢中的应用前景进行了展望.  相似文献   

14.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium-ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   

15.
魏娜  周思彤  赵震 《化学通报》2023,86(2):159-165
金属有机骨架(Metal-organic frameworks, MOFs)材料因具有超大比表面积、可修饰的化学结构、可调的孔隙形状和大小、开放的金属位点等独特的结构优越性而被广泛用于催化CO2环加成反应的研究中。然而,大部分MOFs材料在此反应中往往需要在助催化剂或溶剂的存在下才能发挥其催化性能,这也导致了产物分离困难、资源浪费等问题。因此,开发能够单独催化CO2环加成反应的MOFs材料成为当前科学家们研究的热点。在MOFs骨架上或孔腔内修饰离子液体是构筑此类催化体系的一种重要途径。本文对近年来这类MOFs的构筑策略、催化CO2环加成反应的性能以及催化机理进行了总结,同时还对MOFs组成、形貌以及催化反应条件等因素对催化活性的影响进行了探讨。  相似文献   

16.
Multi‐photon absorption (MPA) is among the most prominent nonlinear optical (NLO) effects and has applications, for example in telecommunications, defense, photonics, and bio‐medicines. Established MPA materials include dyes, quantum dots, organometallics and conjugated polymers, most often dispersed in solution. We demonstrate how metal–organic frameworks (MOFs), a novel NLO solid‐state materials class, can be designed for exceptionally strong MPA behavior. MOFs consisting of zirconium‐ and hafnium‐oxo‐clusters and featuring a chromophore linker based on the tetraphenylethene (TPE) molecule exhibit record high two‐photon absorption (2PA) cross‐section values, up to 3600 GM. The unique modular building‐block principle of MOFs allows enhancing and optimizing their MPA properties in a theory‐guided approach by combining tailored charge polarization, conformational strain, three‐dimensional arrangement, and alignment of the chromophore linkers in the crystal.  相似文献   

17.
离子液体(ILs)功能化的金属有机框架(MOFs)和共价有机框架(COFs)材料兼具离子液体和MOFs/COFs的优点,是一种极具潜力的复合催化材料。MOFs和COFs材料固定的孔结构及较大的比表面积为负载高分散催化中心提供了天然的物理空间;多孔结构促使催化剂与反应物充分接触;丰富的孔道有利于运输催化反应底物和产物,进而实现催化反应的高效进行。特别是离子液体片段的引入,可以作为催化活性中心的配体(稳定剂)或分散剂,同时能够有效改善MOFs和COFs材料孔道和活性中心周围的微环境。此外,还可以充分利用离子液体片段在适当的反应条件下转化为氮杂环卡宾配体的特点,在MOFs和COFs材料中引入氮杂环卡宾有机金属配合物。因此,我们对近几年来离子液体功能化的MOFs或COFs催化体系在CO2环加成、CO2还原、C-C偶联、羰基化以及其它有机转化反应中的研究应用进行简要综述。并对复合材料在催化领域的发展进行总结和展望。  相似文献   

18.
The synthesis, structure, and photophysical properties of novel BODIPY–Fischer alkoxy‐, thio‐, and aminocarbene dyads are reported. The BODIPY chromophore is directly attached to the carbene ligand by an ethylenic spacer, thus forming donor–bridge–acceptor π‐extended systems. The extension of the π‐conjugation is decisive in the equilibrium geometries of the dyads and is clearly reflected in the corresponding absorption and emission spectra. Whereas the BODIPY fragment is mainly isolated in aminocarbene complexes, it is fully conjugated in alkoxycarbene derivatives. The former thus exhibit the characteristic photophysical properties of BODIPY units, whereas complete suppression of the BODIPY fluorescence emission is observed in the latter, as a direct consequence of the strong electron‐accepting character of the (CO)5M?C moiety. As the π‐acceptor character of the metal–carbene group can be modified, the electronic properties of the conjugated BODIPY can be tuned. Density functional calculations have been carried out to gain insight into the photophysical properties.  相似文献   

19.
Metal–organic frameworks containing multiple metals distributed over crystallographically equivalent framework positions (mixed-metal MOFs) represent an interesting class of materials, since the close vicinity of isolated metal centers often gives rise to synergistic effects. However, appropriate characterization techniques for detailed investigations of these mixed-metal metal–organic framework materials, particularly addressing the distribution of metals within the lattice, are rarely available. The synthesis of mixed-metal FeCuBTC materials in direct syntheses proved to be difficult and only a thorough characterization using various techniques, like powder X-ray diffraction, X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy, unambiguously evidenced the formation of a mixed-metal FeCuBTC material with HKUST-1 structure, which contained bimetallic Fe−Cu paddlewheels as well as monometallic Cu−Cu and Fe−Fe units under optimized synthesis conditions. The in-depth characterization showed that other synthetic procedures led to impurities, which contained the majority of the applied iron and were impossible or difficult to identify using solely standard characterization techniques. Therefore, this study shows the necessity to characterize mixed-metal MOFs extensively to unambiguously prove the incorporation of both metals at the desired positions. The controlled positioning of metal centers in mixed-metal metal–organic framework materials and the thorough characterization thereof is particularly important to derive structure–property or structure–activity correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号