首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘佳  秦世斌 《电子测试》2021,(8):89-90,59
为了解决发射极钝化和背面接触(Psssivated emitter and rear contact)单晶硅太阳能电池(以下简称PERC电池)背电场质量差、孔洞问题,对硅片背面形貌和激光开槽宽度进行了优化.通过进行背面抛光和激光开槽宽度的优化,可有效降低表面的能态密度,杜绝孔洞的出现并形成均匀的P+层,进而减少电池背表...  相似文献   

2.
利用真空退火工艺处理p-Si(100)衬底上磁控溅射制备的氧化钒多晶薄膜.利用X射线衍射(XRD)分析、原子力显微镜(AFM)以及四探针测试方法,研究了退火时间对薄膜的相成分和电学性能的影响,并观察分析了氧化钒薄膜的表面形貌.研究结果表明,随着退火时间的变化,薄膜的相成分不断发生变化,钒氧比例不断升高,可以得到多种氧化钒的相.适当的真空退火处理可以改善薄膜的表面质量,并且能有效地降低氧化钒薄膜的室温电阻率达两个数量级.  相似文献   

3.
为了提高FeCoSiB薄膜和FeCoSiB/Cu/FeCoSiB多层膜的磁弹性能,利用磁控溅射方法在玻璃基片上沉积制备薄膜样品,并在真空中退火。测试了不同温度退火后,薄膜样品的应力阻抗效应。结果表明,退火处理条件对薄膜的应力阻抗效应有较大的影响。在6.4kA·m–1磁场下,薄膜经300℃、40min退火处理后,单层FeCoSiB和多层FeCoSiB/Cu/FeCoSiB的应力阻抗效应分别为1.86%和8.30%。  相似文献   

4.
敬浩  戚磊  张蓉竹 《半导体光电》2019,40(6):766-770
针对发生损伤后三结GaAs电池的电学特性进行了研究。从三结电池的等效电路模型出发,根据光伏效应相关理论,建立了GaAs三结电池损伤分析模型,具体计算了损伤发生在不同位置时,光电池输出电压、功率、效率的变化。结果表明,顶结发生热熔损伤对电池的电学特性影响最大,将直接导致光电转换效率下降17.23%。中结发生热熔损伤对电池的电学特性影响次之,将引起4.23%的效率下降。底结损伤对电池的电学特性影响相对最小,所导致的光电转换效率下降量为2.42%。  相似文献   

5.
运用热重-气相色谱质谱联用系统(TGA-GC-MS)在线检测了商用锂离子电池正极物质在燃烧过程中的质量变化及其气相燃烧产物成分,结合X射线衍射仪对固相燃烧产物成分的测定,分析了荷电状态(State of Charge,SOC)对正极物质燃烧产物的影响。结果表明:商用锂离子电池正极物质的固相燃烧产物为Li3Fe2(PO4)3和Fe2O3,气相燃烧产物为CO和CO2,荷电状态对固相产物的成分无影响,对气相产物的影响较大。荷电量为0时,气相燃烧产物中CO的含量最多,烟气毒性最大。而荷电量为50%时,CO的含量最少,烟气毒性最弱。  相似文献   

6.
在W通孔的多层金属化系统中,金属离子的蓄水池效应对其电迁移寿命的影响很大,文中设计制作了12种不同的蓄水池结构,并进行了电迁移实验.着重考察蓄水池面积、通孔位置、通孔数目对互连线电迁移寿命的影响,得出蓄水池的面积是影响电迁移寿命的主要因素.  相似文献   

7.
Amorphous/crystalline silicon heterostructure solar cells have been fabricated by hot wire chemical vapor deposition (HWCVD) on textured p-type substrates. The influence of chemical polish (CP) etching and the post annealing process on the solar cell performance have been studied. The CP treatment leads to a reduction of stress in the i-layer by the slight rounding of the pyramid peaks, therefore improving the deposition coverage and the contact by each layer, which is beneficial for the performance of the solar cells. An optimized etching time of 10-15 s has been obtained. A post annealing process leads to a considerably improved open voltage (Voc), filled factor (FF), and conversion efficiency (η) by restructuring the deposited film and reducing the series resistance. An efficiency of 15.14% is achieved that represents the highest result reported in China for an amorphous/crystalline heterostructure solar cells based on the textured p-type substrates.  相似文献   

8.
实验分别采用高低温退火和循环变温退火方式对液相外延生长的HgCdTe材料进行饱和汞压热处理,研究了两种热处理工艺对碲镉汞材料位错密度及电学性能的影响。结果表明:相较于高低温退火,经循环变温退火后HgCdTe材料的位错密度有了明显的降低,并且材料的迁移率有了显著的提升。研究发现循环变温退火是一种较好提升HgCdTe材料性能的热处理方法。  相似文献   

9.
面密度是影响锂离子电池快充性能的主要因素之一。采用扫描电子显微镜、X射线衍射仪及粒度分析表征正负极材料形貌和结构,研究不同面密度镍钴锰酸锂/石墨锂离子电池的内阻、倍率性能、循环寿命和安全性能。结果表明,电池的内阻随着面密度的增加而增大,正极面密度从190 g/m~2提高到340 g/m~2,电池均呈现出良好的5C快速充放电性能和安全性能。正极面密度不超过280 g/m~2时,电池依然保持优异的10C快速充放电性能,容量达到1C倍率的93.4%以上。正极面密度为250 g/m~2的电池展示出最佳的5C倍率充放电寿命,2000次充放电后的容量保持率高达98.1%。而正极面密度为340 g/m~2的电池5C倍率充放电寿命衰减较快。  相似文献   

10.
杨洁静  张志东 《现代显示》2007,55(1):52-54,63
液晶盒内分子的排列很容易受外场的影响,对向列相液晶盒施加足够大的电场,液晶分子排列和序参数都将随空间变化,序参数发生变化会有序电效应产生,要考虑序参数的变化我们选用朗道自由能展开式表示液晶的体自由能密度。本文讨论的是平行型液晶盒,利用差分法和计算机模拟计算得到了不同电场作用下向列相液晶分子指向矢和序参数随空间变化的图形规律.并讨论了序电效应和序电极化能对自由能密度的影响。  相似文献   

11.
利用PCID软件模拟了n~+/p-p~+结构的单晶硅太阳电池铝背场与硅片厚度对其输出特性的影响.结果表明,有铝背场时太阳电池获得明显的开路电压、短路电流以及光电转换效率的增益;硅片厚度越小,铝背场对其输出特性的影响越大;在有铝背场情况下,硅片厚度为120μm时,可获得最大的光电转换效率.
Abstract:
The PC1D was usecl to simulate the influence of Al-BSF and wafer thickness on electrical properties of n~+/p-p~+ structural monocrystalline silicon solar cells. It is found that solar cells with the Al-BSF structure can gain obvious open circuit voltage, short-circuit current, as well as photoelectric conversion efficiency; the smaller the wafer thickness is, the bigger of the effect of Al BSF works on the electrical properties; when the wafer thickness is 120 m, the solar cells can get the biggest photoelectric conversion efficiency.  相似文献   

12.
在工业产线上制备了PERC结构的多晶硅太阳电池,并研究了在电池背表面引入PERC背钝化结构对其光电转换性能的影响。结果表明:PERC背钝化结构能够提升电池的短路电流和开路电压,光电转换效率超过了20%。结合光学仿真及分析电池的关键光电参数知,其光电转换性能改善的原因可归结为PERC背钝化结构降低了长波太阳光子在背铝电极的寄生吸収损失和光生载流子的背表面复合损失。PERC背钝化结构能够提升多晶硅太阳电池的光电转换效率,并且其制备工艺与传统产线兼容,是一种优选的产业电池结构。  相似文献   

13.
沈鸿烈  吕红杰 《电子器件》2011,34(5):498-502
在碱溶液各向异性腐蚀单晶硅片制备绒面的过程中,固定反应温度和添加剂体积分数,重点研究了金字塔倾斜角α的大小与反射率间的关系,并分析了反应时间和NaOH溶液的浓度对表面织构的影响.用分光光度计测量了制备绒面的反射率,结果表明,当腐蚀时间为40 min,NaOH质量分数为2.5%时,在400nm~1 100nm波长范围内,...  相似文献   

14.
通过实验分析Na2SiO3和Na3PO4混合溶液对〈100〉晶向的单晶Si片的各向异性腐蚀过程,探讨了Na2SiO3溶液和Na2SiO3、Na3PO4混合溶液对表面织构化的影响机制,并且对制绒前Si片的电化学清洗过程和混合溶液的反应温度和反应时间等参数的变化对金字塔绒面微观形貌的影响做了分析。最终通过大量实验得到,用质量分数为4%的Na2SiO3和2%的Na3PO4混合溶液在78℃腐蚀60min,单晶Si片表面可获得最佳反射率为11.98%的减反射绒面。单晶Si片表面的反射率优于单独使用Na2SiO3溶液腐蚀,更重要的是制得了很好的均匀性表面。  相似文献   

15.
连维飞  沈鸿烈  张树德 《半导体光电》2021,42(4):511-514, 520
分别使用掺镓和常规掺硼单晶硅片制备了太阳电池与组件,对电池进行了光照和空焊处理,再采用Halm电池电性能测试仪测试了两种单晶硅太阳电池和组件在光照和空焊实验前后的光电性能.实验结果表明,在相同光照条件下,采用掺镓单晶硅片所制太阳电池的光衰率比用掺硼单晶硅片的低0.91%.空焊后的掺镓单晶硅太阳电池各项光电性能参数的一致性没有出现明显变化,这有利于减少太阳电池之间的失配损失.还发现掺镓单晶硅太阳电池组件的CTM(cell to module)值高于掺硼单晶硅太阳电池组件的CTM值.总之,掺镓单晶硅太阳电池能更好地抑制光致衰减效应,并减小串焊工艺对太阳电池光电性能的影响,获得更高的太阳电池组件功率.  相似文献   

16.
采用化学腐蚀法分别在单晶Si和多晶Si上制备了多孔Si。对室温下HF、HNO3的不同配比进行了实验比较,用显微镜和扫描电子显微镜(SEM)观察了多孔Si的表面形貌,用紫外激发观察了它的荧光光谱并用反射光谱测试结果研究了多孔Si的光学特性。采用一步多孔Si法制备了1cm×1cm的单晶和多晶Si电池,比较了制备多孔Si前后电池的各项性能参数。实验表明:多孔Si对于提高单晶Si和多晶Si电池的电学特性都有重要作用。  相似文献   

17.
论述分析了国内外晶体硅太阳电池回收技术现状,研究了太阳电池的结构及制备工艺,提出了废弃多晶硅太阳电池回收高纯硅片的工艺.依次去除铝背场/铝硅合金层/背银、氮化硅减反膜/正银、磷扩散层及金属杂质,得到高纯硅片.硅原料的回收率高达76.4%,回收的高纯硅片经检验检测,其电阻率、间隙氧浓度、代位碳含量和少子寿命均符合GB/T 29055-2012中规定的性能参数.该回收工艺路线简单,回收率高,成本低,适于产业化推广.废弃太阳电池的回收再利用不仅可以在一定程度上缓解硅原料短缺的问题,还可以减少废弃的太阳电池给环境造成负担.  相似文献   

18.
多孔硅的光电性质及在太阳能电池中的应用   总被引:1,自引:0,他引:1  
论述了多孔硅电化学和化学的腐蚀机理以及多孔硅的光电性质,提出多孔硅在太阳能电池应用中存在的一些实际问题。  相似文献   

19.
表面活性剂在单晶硅太阳能电池片制绒中的作用   总被引:1,自引:0,他引:1  
表面活性剂在晶体硅电池清洗制绒中具有重要的作用。在现有大规模产业化生产线NaOH+H2O+异丙醇(IPA)制绒体系的基础上,研究了复配表面活性剂替代异丙醇的可行性。通过测试不同浓度复配表面活性剂条件下制备得到绒面的表面反射率和SEM形貌图,测试研究结果显示,复配表面活性剂的制绒效果要显著优于以异丙醇(IPA)为添加剂的腐蚀溶液,且复配表面活性剂浓度在略大于临界胶束浓度得到最优实验结果。  相似文献   

20.
硼掺杂对a-Si薄膜电导率及太阳电池效率的影响   总被引:2,自引:0,他引:2  
对等离子增强化学气相沉积技术(PECVD)低温制备的非晶硅(a Si)薄膜的电导率随B掺杂浓度的变化规律进行了研究。结果表明:当B2H6/SiH4由0.6%增加到0.8%时,a Si薄膜的暗电导率由10-5(Ω·cm)-1急剧增加到10-1(Ω·cm)-1;进一步增加B2H6/SiH4时,暗电导率增加缓慢;当B2H6/SiH4大于1.0%时,暗电导率急剧下降。对B2H6/SiH4为1.0%及1.2%的P层材料制备的太阳电池的研究结果表明:采用B2H6/SiH4为1.2%的光电转换效率优于1.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号