首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nonlinear viscoelastic properties of the MR fluid, MRF-132LD, under large-amplitude oscillatory shear were investigated. This was accomplished by carrying out the experiments under the amplitude sweep mode and the frequency sweep mode, using a rheometer with parallel-plate geometry. Investigations under the influence of various magnetic field strength and temperatures were also conducted. MR fluids behave as nonlinear viscoelastic or viscoplastic materials when they are subjected to large-amplitude shear, where the storage modulus decreases rapidly with increasing strain amplitude. Hence, MR fluid behaviour ranges from predominantly elastic at small strain amplitudes to viscous at high strain amplitudes. Large-amplitude oscillatory shear measurements with frequency sweep mode reveal that the storage modulus is independent of oscillation frequency and approaches plateau values at low frequencies. With increasing frequency, the storage modulus shows a decreasing trend before increasing again. This trend may be explained by micro-structural variation. In addition, the storage modulus increases gradually with increasing field strength but it shows a slightly decreasing trend with temperature.  相似文献   

3.
Numerical analysis is performed to examine axisymmetric laminar flow and heat transfer characteristics of colloidal dispersions of nanoparticles in water (nanofluids). Effect of volume fraction on flow and heat transfer characteristics is investigated. Eight different materials, alumina, copper, copper oxide, diamond, gold, graphite, silver, and zirconia are considered. Heat transfer and property measurements were conducted previously for Alumina nanofluid and the results have shown that nanofluids behave as homogeneous mixtures. It is found that oxide-based nanofluids offer the least heat transfer enhancement compared to elements-based nanofluids. For a given volume flow rate, all nanofluids exhibited linear increase in heat transfer enhancement with increasing colloids volume fraction, up to 0.05. Furthermore, it is found that in the thermal entrance region, a hydrodynamically developing flow exhibits significantly higher heat transfer enhancement than fully-developed conditions.  相似文献   

4.
 The effect of a low-molecular-weight physically adsorbed poly(ethylene oxide) on the rheological behavior of aqueous dispersions of silica particles (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing polymer concentration in the system at different volume fractions of the particles. Experiments were performed in the absence of salt and just the pH of the dispersion was adjusted to 9.5, a condition at which the system is electrostatically stable and electrostatic repulsive forces are long range in nature. It was observed that the shear viscosity and the linear viscoelastic functions of the dispersion at 55 vol% increase initially through the addition of polymer, reach a maximum, and then decrease to a minimum with further addition of polymer to the system. At higher polymer concentrations, there may be an increase in the viscosity of the dispersion owing to an increase in the concentration of free polymer chains in the medium causing depletion flocculation in the system. The increase in the rheological behavior of the dispersion at low polymer coverage is attributed to polymer bridging flocculation caused by a low-molecular-weight poly(ethylene oxide) in the system. Comparison of the data given here with the results of earlier studies on the viscosity behavior of the system in the presence of salt (0.01 M) indicates that the range of the electrostatic repulsion has a significant role in the rheological behavior of the system. Received: 7 February 2001 Accepted: 18 October 2001  相似文献   

5.
Rheological properties of three different nanocomposites, consisting of graphene oxide (GO), reduced graphene oxide (rGO), and polyhedral oligomeric silsesquioxane grafted reduced graphene oxide (rGO-POSS) as nanofillers and polydimethylsiloxane (PDMS), were investigated by large amplitude oscillatory shear (LAOS). The viscoelastic nonlinearity of the three nanofluids groups was studied by Lissajous curves, local nonlinear viscoelastic moduli of an oscillatory shear cycle, and Fourier transform rheology as a function of filler concentration and increasing and decreasing strain magnitude. The nonlinear behavior of the nanofluids was compared to understand the variation of internal microstructures. Firstly, GO/PDMS composites behave with higher moduli and smaller linear viscoelastic range comparing to that of other two composites. Secondly, the elastic stress Lissajous curves of these composites changed from elliptic to rectangular with round the corner with increasing the filler level and strain amplitude. Thirdly, all these three nanofluids exhibited intra-cycle strain stiffening with increasing strains and shear thickening at intermediate strain and then shearing thinning with increasing strain further. Fourthly, higher harmonic intensity of rGO/PDMS increased with increasing strain and came to a plateau, while that of other two nanofluids reached a maximum and then decreased. It suggested that different surface functionalization of nanoparticles will present different rheological behavior due to formed different network and LAOS could be used as a potential helpful method to characterize rheological properties of nanocomposites, especially at higher shear strain.  相似文献   

6.
In order to investigate the effect of the particle size distribution on the rheological properties of concentrated colloidal dispersions both steady-state shear and oscillatory measurements have been performed on well-characterized bimodal dispersions of sterically stabilized PMMA particles. Replacing a minor amount of large particles by small ones in a concentrated dispersion, keeping the total effective volume fraction constant, decreases the viscosity quite drastically. On the other hand, replacing a small amount of small particles by big ones hardly effects the viscosity at all. This behavior can be attributed to the deformability of the stabilizing polymer layer. A procedure is proposed to calculate the limiting viscosities in a bimodal colloidal dispersion starting from the characteristics of the monodisperse systems. A good agreement has been obtained between the calculated values and the experimental results. The linear viscoelastic properties of the concentrated dispersions have been investigated by means of oscillatory measurements. The plateau values of the storage modulus for the bimodal dispersions decrease with an increasing fraction of the coarse particles. By substituting the bimodal dispersion by an equivalent monodisperse system the storage modulus can be superimposed on the values for the monodisperse suspensions when plotted as a function of the mean interparticle distance.  相似文献   

7.
Even though the rheological behavior of aqueous graphene oxide (G-O) dispersions has been shown to be strongly time-dependent, only few transient measurements have been reported in the literature. In this work, we attempt to fill the gap between transient and steady shear rheological characterizations of aqueous G-O dispersions in the concentration range of 0.004 < ? <?3.5 wt%, by conducting comprehensive rheological measurements, including oscillatory shear flow, transient shear flow, and steady shear flow. Steady shear measurements have been performed after the evaluation of transient properties of the G-O dispersions, to assure steady-state conditions. We identify the critical concentration ? c =?0.08 wt% (where G-O sheets start to interact) from oscillatory shear experiments. We find that the rheology of G-O dispersions strongly depends on the G-O concentration ?. Transient measurements of shear viscosity and first normal stress difference suggest that G-O dispersions behave like nematic polymeric liquid crystals at ?/? c =?25, in agreement with other work reported in the literature. G-O dispersions also display a transition from negative to positive values of the first normal stress difference with increasing shear rates. Experimental findings of aqueous graphene oxide dispersions are compared and discussed with models and experiments reported for nematic polymeric liquid crystals, laponite, and organoclay dispersions.  相似文献   

8.
Proteins and surfactants behave very differently under shear and dilatational deformation. In this work, we compare specifically their surface properties by evaluating their rheological response. Oil-soluble surfactant, sorbitan tristearate (Span 65), and globular protein, β-lactoglobulin, were spread and adsorbed onto the surface, respectively. A 2D searle-type measuring geometry with a biconical bob was used for measuring the surface shear rheology, and a pendant drop film balance was used for measuring the dilatational rheology. Both equipments provided the viscoelastic properties (surface shear and dilatational complex moduli) of interfacial layers. Also, the linear and non-linear rheology of these systems was studied by increasing the amplitude of the oscillation. Linear rheology showed that dilatational deformation is mostly affected by the nature of the molecular structure at the interface, whereas shear deformation is affected by the strength of the surface film due to the intermolecular interactions. Furthermore, large-amplitude oscillatory shear rheology indicated that the non-linearity increases with the surface concentration, and is higher for insoluble Span 65 spread films than for soluble protein adsorbed layers. Dilatational and shear deformation provide complementary information about interfacial layers that can be optimized so as to fully characterize the surface depending of the type of film (spread or adsorbed) and the technique used (shear or dilatational rheology under linear or non-linear regimes). This information is useful to correlate the structure and the mechanical properties of interfacial systems.  相似文献   

9.
This paper provides information on the microstructure of, and reports particle size distributions and rheological results for, aqueous dispersions of spray-dried egg yolk and xanthan gum prepared on a laboratory scale using two types of homogenisers. Laser light scattering results demonstrated that higher energy input during homogenisation yielded a dispersion with a lower average particle size and a wider polydispersity, slightly influencing the linear dynamic viscoelastic functions due to the low concentration of egg yolk particles. These dispersions exhibited weak gel properties at the composition studied. The mechanical spectrum and the corresponding relaxation spectrum were dominated by the xanthan/gum-water matrix which controls the structure of the continuous phase. This fact explained the lack of any wall depletion effects. Several controlled-rate and controlled-stress rotational rheometers and a capillary rheometer were used to obtain information on flow properties. The shear rate dependence of steady state viscosity was determined through twelve decades, and was fitted using the Carreau equation. The kinetics of structural recovery after steady-state shear was studied by start-up at the inception of shear and flow interrupted experiments under controlled shear history. The results were analysed in terms of the ratio of a time-dependent amount of overshoot to the amount of overshoot of the original sample, using the addition of two first order equations. Additionally, combined steady state flow properties at fixed shear stress/oscillatory shear experiments were also used. The increase of the storage modulus with time, checking a linear viscoelastic response, tracked the structural recovery after steady shear. Laser light scattering of sheared samples helped gain a better understanding of the role of egg yolk particles on the rheology of these dispersions. Received: 6 February 2000 Accepted: 5 September 2000  相似文献   

10.
Fourier transform rheology is a very sensitive technique to characterize non-linear rheological fluid properties. It has been applied here for the first time to polymer dispersions in water and the results are compared to those from conventional rheology, namely steady and small amplitude oscillatory shear experiments. The investigated systems are mainly based on styrene and n-butylacrylate. A first attempt was made to evaluate how far colloidal parameters like particle volume fraction and ionic strength as well as chemical composition and surface characteristics of the dispersed particles are reflected in FT-rheology spectra. Significantly different non-linearities are observed for highly concentrated dispersions of particles with different Tg. These differences are not detected in linear oscillatory shear and show up in steady shear only at significantly higher shear rates. Particle surface characteristics influence the non-linear response in oscillatory shear significantly and the intensity of the overtones is found to be higher for a dispersion of particles with a “hairy” swollen surface layer as compared to a system of smooth particles, although the solids content was adjusted to match the steady shear viscosity. The intensity of the overtones in FT-rheology strongly decrease upon dilution. At a solid content below 35% no differences are observed in the FT-experiments for the systems investigated here, whereas the differences in steady shear are very pronounced in this concentration range. A significant influence of added salt onto the non-linear response is detected for some systems, which might be correlated to the stability of these systems. The observed phenomena certainly cannot be explained in terms of constitutive equations or microstructural statistical mechanical models at present. Thus, FT-rheology yields information complementary to classical steady or linear oscillatory shear experiments. Received: 11 December 2000 Accepted: 8 April 2001  相似文献   

11.
The governing equations of monodomain isothermal cholesteric liquid crystals subjected to small amplitude oscillatory rectilinear shear have been derived for three representative helix orientations. The imposition of oscillatory flow excites splay-bend-twist deformations when the helix is aligned along the flow direction, splay-bend deformations when the helix is along the vorticity gradient, and twist deformations when aligned along the velocity axis. The different nature of the excited elastic modes as well as the anisotropic viscosities are reflected in the anisotropy of the linear viscoelastic material functions for small amplitude rectilinear oscillatory shear. When the helix is aligned along the flow direction, cholesteric viscoelasticity is strongest, and exists in a relatively narrow band of intermediate frequencies. When the helix is aligned along the vorticity direction cholesteric viscoelasticity is significant in a relatively broad range of intermediate frequencies. Finally, when the helix is aligned along the velocity gradient direction, cholesteric viscoelasticity is relatively insignificant and only exists in a narrow band of frequencies. The cholesteric pitch controls the location of viscoelastic region on the frequency spectrum, but only when the helix is not oriented along the vorticity axis.  相似文献   

12.
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation. It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates. The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined hi...  相似文献   

13.
Oscillatory rheological experiments at different temperatures and over a wide range of frequencies have been used to investigate the gelation process and, more particularly, the sol–gel transition of various poly(vinyl chloride) (PVC) plastisols. The sol–gel transition process was found to be universal with respect to the temperature and solid volume fraction according to the similarity of the fractal structure in PVC plastisols. The variation of the gel time (t gel) with temperature for any composition of PVC plastisols was predicted from the Dickinson’s model (E. Dickinson, J Chem Soc Faraday Trans, 93:111–114, 1997). Dynamic viscoelastic properties of PVC plastisols have also been studied as a function of temperature that allowed us to follow the gelation process of various plastisols. Thus, the influence of the type and concentration of PVC resins in gelation process was investigated. The variation of the complex shear modulus at a constant frequency was depicted by a master curve regarding the dependence of the moduli on PVC concentrations.  相似文献   

14.
The dynamic properties as a function of frequency and strain amplitude, steady-state viscosity as a function of shear rate, and transient shear stresses at startup and cessation of shear flow of polystyrene (PS)/fumed silica mixtures of various concentrations were investigated. An abrupt change in the viscoelastic properties was noticed at a concentration above 1% by volume. Observations by means of scanning electron microscopy (SEM) indicate the presence of a three-dimensional network through the bridging of filler particles by the adsorbed polymer. The viscoelastic behavior is simulated utilizing a theory proposed in Part I (Havet and Isayev 2001) based on a double network created by the entangled polymer matrix and the adsorbed polymer with filler concentration taken into account through the bridging density of polymer-filler interactions and a hydrodynamic reinforcement. The steps taken for determining the model parameters required to carry out the simulation are described. The major features of the rheological behavior of highly interactive polymer-filler mixtures are captured qualitatively and in some cases, quantitatively predicted.  相似文献   

15.
The influences of interfacial tension and compressibility to the linear viscoelastic properties of nanocomposite and nanoporous materials are considered theoretically. The effective bulk and shear moduli of the systems are calculated within the generalized composite sphere model which takes into account the effect of interfacial tension. It is found that frequency dependence of the effective dynamic shear and bulk moduli of nanocomposites with the compressible elastic matrix and viscous inclusions may be represented in terms of the Zener model comprising of the viscoelastic Kelvin element in series with the elastic spring. The relations of the Zener model parameters with the material characteristics are revealed. The physical interpretation of the frequency behavior of the dynamic shear and bulk moduli against the interfacial tension, component compressibility, viscosity, and inclusion volume fraction is discussed. Victor G. Oshmyan deceased.  相似文献   

16.
The effect of high-pressure treatments on the gelation of egg yolk dispersions was studied by using differential scanning calorimetry (DSC) and small amplitude oscillatory shear (SAOS). The influence of pressure of processing and pH were analysed. The DSC results suggest a progressive decrease in thermal denaturation enthalpy as pressure level increases related to protein denaturation. SAOS was used to evaluate the effect of different pressure levels on the linear viscoelastic behaviour of egg yolk dispersions. An increase in the pressure level produces a dramatic change in the linear viscoelastic behaviour undergoing a sol–gel transition. High hydrostatic pressure (HHP) processing was also analysed as a function of pH and solids content. The results obtained confirm that the impact of high pressure on aggregation and network formation can be modulated by pH. HHP processing of egg yolk systems is highly affected by protein concentration particularly when it is compared to heat processing.  相似文献   

17.
The high frequency rheology of model, hard sphere dispersions of charge-neutralized, coated silica particles in tetrahydrofurfuryl alcohol (THFA) was measured using two torsional resonators at five frequencies. The resulting elastic modulus shows ω1/2 limiting behavior at high frequencies and is in quantitative agreement with the theoretical predictions of Lionberger and Russel [J. Rheol. 38 (1994) 1885]. The lack of a high frequency plateau is a signature of weaker hydrodynamic interactions acting at very small separations. Calculations verify that despite the lack of a high frequency plateau, these dispersions can exhibit reversible shear thickening at high shear rates, in agreement with experiment. Thus, the experiments verify the unique sensitivity of high frequency rheology to hydrodynamic properties at the particle surface.  相似文献   

18.
The attenuation and dispersion of elastic waves in fluid-saturated rocks due to the viscosity of the pore fluid is investigated using an idealized exactly solvable example of a system of alternating solid and viscous fluid layers. Waves in periodic layered systems at low frequencies are studied using an asymptotic analysis of Rytov’s exact dispersion equations. Since the wavelength of shear waves in fluids (viscous skin depth) is much smaller than the wavelength of shear or compressional waves in solids, the presence of viscous fluid layers necessitates the inclusion of higher terms in the long-wavelength asymptotic expansion. This expansion allows for the derivation of explicit analytical expressions for the attenuation and dispersion of shear waves, with the directions of propagation and of particle motion being in the bedding plane. The attenuation (dispersion) is controlled by the parameter which represents the ratio of Biot’s characteristic frequency to the viscoelastic characteristic frequency. If Biot’s characteristic frequency is small compared with the viscoelastic characteristic frequency, the solution is identical to that derived from an anisotropic version of the Frenkel–Biot theory of poroelasticity. In the opposite case when Biot’s characteristic frequency is greater than the viscoelastic characteristic frequency, the attenuation/dispersion is dominated by the classical viscoelastic absorption due to the shear stiffening effect of the viscous fluid layers. The product of these two characteristic frequencies is equal to the squared resonant frequency of the layered system, times a dimensionless proportionality constant of the order 1. This explains why the visco-elastic and poroelastic mechanisms are usually treated separately in the context of macroscopic (effective medium) theories, as these theories imply that frequency is small compared to the resonant (scattering) frequency of individual pores.  相似文献   

19.
The propagation speeds of linear waves in gas–solid suspensions depend strongly on the solids volume fraction and the wave frequency. The latter is due to gas–solid momentum transfer and allows a simple test on filtered gas–solid momentum transfer models. Such models may predict linear wave propagation speeds different from those obtained with the non-filtered model at wave frequencies higher than the filter frequency, but not at wave frequencies lower than the filter frequency.  相似文献   

20.
黄小林  吴伟  王熙 《力学与实践》2017,39(4):343-348
为研究黏弹性地基上功能梯度材料板的自由和强迫振动特性,基于Reddy高阶剪切变形理论以及由Shen导得的广义Karman型方程,用双重Fourier级数法推导了三参数黏弹性地基上四边简支功能梯度材料板自由振动和动力响应的解析解,计算了各模态自振频率和半波冲击载荷作用下的动力响应,讨论了材料组分指数、黏弹性地基参数、边厚比等因素对自由振动和动力响应的影响.结果表明,黏弹性地基的剪切和压缩刚度显著提升了功能梯度材料板的振动频率,减小了动力响应;另外,地基的黏性对振动频率和动力响应也有一定的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号