首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A nanowire superlattice of InAs and GaAs layers with In0.47Ga0.53As as the impure layers is proposed. The oft-neglected k3 Dresselhaus spin-orbit coupling causes the spin polarization of the electron but often can produce a limited spin polarization. In this nanowire superlattice, Dresselhaus term produce complete spin filtering by optimizing the distance between the In0.47Ga0.53As layers and the Indium (In) in the impure layers. The proposed structure is an optimized nanowire superlattice that can efficiently filter any component of electron spins according to its energy. In fact, this nanowire superlattice is an energy dependent spin filter structure.  相似文献   

2.
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n−1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure.  相似文献   

3.
A. John Peter 《Physics letters. A》2008,372(31):5239-5242
The spin dependent electron transmission through a non-magnetic III-V semiconductor symmetric well is studied theoretically so as to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy as well as the well width, within the one electron band approximation along with the spin-orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors.  相似文献   

4.
王瑞琴  宫箭  武建英  陈军 《物理学报》2013,62(8):87303-087303
电子的隧穿时间是描述量子器件动态工作范围的重要指标. 本文考虑k3 Dresselhaus 自旋轨道耦合效应对系统哈密顿量的修正, 结合转移矩阵方法和龙格-库塔法来解含时薛定谔方程, 进而讨论了电子在非磁半导体对称双势垒结构中的透射系数及隧穿寿命等问题. 研究结果发现:由于k3 Dresselhaus 自旋轨道耦合效应使自旋简并消除, 并在时间域内得到了表达, 导致自旋向上和自旋向下电子的透射峰发生了自旋劈裂; 不同自旋取向的电子构建时间和隧穿寿命不同, 这是导致自旋极化的原因之一; 电子的自旋极化在时间上趋于稳定. 关键词: 自旋极化输运 透射系数 隧穿寿命 自旋极化率  相似文献   

5.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

6.
The influence of in-plane magnetic field on spin polarization in the presence of the oft-neglected k3-Dresselhaus spin-orbit coupling was investigated. The k3-Dresselhaus term can produce a limited spin polarization. The in-plane magnetic field plays a great role in the tunneling process. It can generate the perfect spin polarization of the electrons and the ideal transmission coefficient for spin up and down simultaneously. In energy scale, complete separation between spin up and down resonance was obtained by a relatively higher in-plane magnetic field while a comparatively lower in-plane magnetic field vanishes the spin separation. On the other hand, the spin relaxation can be suppressed by compensating the oft-neglected k3-Dresselhaus spin orbit coupling using a relatively lower in-plane magnetic field.  相似文献   

7.
We investigate theoretically the spin-dependent Goos–Hänchen (GH) effect in a magnetic nanostructure modulated by spin–orbit coupling (SOC), which can be experimentally realized by depositing a ferromagnetic (FM) stripe and a Schottky-metal (SM) stripe on the top and bottom of an InAs/AlxIn1?xAs heterostructure, respectively. We consider two kinds of different SOCs (Rashba and Dresselhaus types), and calculate the GH shift and its spin polarization for the electrons across the device. Results show that the GH shift still is spin-polarized after including the SOC, and the behavior of the spin-polarized electrons can be manipulated by the Rashba and/or Dresselhaus SOC. These interesting properties provide an alternative scheme for spatially realizing spin injection into a semiconductor, and the magnetic nanostructure can be employed as a controllable spatial spin splitter for a spin-polarized source in spintronics.  相似文献   

8.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

9.
《Physics letters. A》2020,384(4):126092
The purpose of this paper is to theoretically investigate the spin-orbit interactions of common semiconductor superlattices. Spin splitting and spin-orbit interaction coefficients are calculated based on interactions between the interface-related-Rashba effect and Dresselhaus effect. Semiconductor superlattice shows a series of specific characteristics in spin splitting as follows. The spin splitting of the superlattice structure is greater than that of a single quantum well, contributing to significant spin polarization, spin filtering, and convenient manipulation of spintronic devices. The spin splitting of some superlattice structures does not change with variation of the size of some constituent quantum wells, reducing the requirements for accuracy in the size of quantum wells. The total spin splitting of lower sub-levels of some superlattice can be designed to be zero, realizing a persistent spin helix effect and long spin relaxation time, however, the total spin splitting of higher sub-levels is still appreciable, contributing to desirable spin polarization. These results demonstrate that one superlattice structure can realize two functions, acting as a spin field effect transistor and a spin filter.  相似文献   

10.
丁秀欢  张存喜  王瑞  周运清  孔令民 《中国物理 B》2012,21(3):37302-037302
We have investigated theoretically the field-driven electron transport through a single-quantum-well semiconductor heterostructure with spin-orbit coupling. The splitting of the asymmetric Fano-type resonance peaks due to the Dresselhaus spin-orbit coupling is found to be highly sensitive to the direction of the incident electron. The splitting of the Fano-type resonance induces the spin-polarization dependent electron current. The location and the line shape of the Fano-type resonance can be controlled by adjusting the energy and the direction of the incident electron, the oscillation frequency, and the amplitude of the external field. These interesting features may be used to devise tunable spin filters and realize pure spin transmission currents.  相似文献   

11.
We have investigated theoretically the field-driven electron transport through a single-quantum-well semiconductor heterostructure with spin-orbit coupling.The splitting of the asymmetric Fano-type resonance peaks due to the Dresselhaus spin-orbit coupling is found to be highly sensitive to the direction of the incident electron.The splitting of the Fano-type resonance induces the spin-polarization dependent electron current.The location and the line shape of the Fano-type resonance can be controlled by adjusting the energy and the direction of the incident electron,the oscillation frequency,and the amplitude of the external field.These interesting features may be used to devise tunable spin filters and realize pure spin transmission currents.  相似文献   

12.
Xing-Tao An 《Physics letters. A》2008,372(8):1313-1318
Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers.  相似文献   

13.
李春雷  徐燕  张燕翔  叶宝生 《物理学报》2013,62(10):107301-107301
采用单电子有效质量近似理论, Floquet理论和传递矩阵方法, 对包含时间周期场的双量子阱中单电子的自旋隧穿特性进行了研究, 对InP/InAs半导体材料进行了数值计算. 重点研究了Rashba型和Dresselhaus型自旋轨道耦合、量子阱结构以及偏压对电子隧穿的影响. 这些结果可以为设计和调控半导体自旋电子器件提供一定的理论依据. 关键词: 光子辅助隧穿 隧穿概率 量子阱  相似文献   

14.
We theoretically investigate the electron transport in a periodic non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit effects. We show that the transport properties obviously depend on the number of periods and the large spin polarization can be achieved in such a structure. We also show that for m>1, the resonance splitting occurs in the transmission curves of both spin-up and spin-down electrons when the transmission curves are plotted as a function of the electron energy or the well width.  相似文献   

15.
We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.  相似文献   

16.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

17.
通过采用转移矩阵方法求解自旋电子隧穿过程,理论研究了半导体超晶格系统中电子自旋输运的磁电调控行为.结果表明:仅对超晶格系统施以磁调制,隧穿系数将出现自旋分裂,随磁场增强,电导自旋极化率变大且展宽于费米能区;若选取不变磁场情况,同时施以间隔周期电场调制,超晶格的电子极化率将有更为显著地提高.进一步发现,随电场强度的改变,电子自旋输运行为显然存在两个明显不同区域,下自旋电子将在不同调制区域表现为不同的变化趋势.然而,若对周期磁超晶格施加间隔两周期的电调制,自旋电导输运的临界行为消失,电导极化率在高能区的共振峰 关键词: 半导体超晶格 自旋输运 磁电调控  相似文献   

18.
In this work we briefly review the present day perspectives for exploiting conventional non-magnetic semiconductor nano-technology to design high speed spin-filter devices. In recent theoretical investigations a high spin polarization has been predicted for the ballistic tunneling current in semiconductor single- and double-barrier asymmetric tunnel structures of III–V semiconductors with strong Rashba spin–orbit coupling. We show in this paper that the polarization in the tunneling can probability be sufficiently increased for producing realistic single-barrier structures by including of the Dresselhaus term into consideration.  相似文献   

19.
We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band.  相似文献   

20.
杜坚  张鹏  刘继红  李金亮  李玉现 《物理学报》2008,57(11):7221-7227
研究了含δ势垒的铁磁/半导体/铁磁异质结中自旋相关的透射概率和渡越时间,讨论了量子尺寸效应和Rashba自旋轨道耦合效应对隧穿特性的影响.研究结果表明:δ势垒的存在降低了自旋电子的透射概率,改变了透射概率的位相.Rashba自旋轨道耦合强度的增加加大了透射概率的振荡频率.不同自旋取向的电子隧穿异质结时,渡越时间随着半导体长度、Rashba自旋轨道耦合强度以及两铁磁电极中的磁化方向的夹角的变化而变化. 关键词: δ势垒')" href="#">δ势垒 铁磁/半导体/铁磁异质结 Rashba自旋轨道耦合效应 渡越时间  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号