首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.  相似文献   

2.
We propose a new scheme of spin filtering employing ballistic nanojunctions patterned in a two dimensional electron gas (2DEG). Our proposal is essentially based on the spin-orbit (SO) interaction generated by a lateral confining potential (β-SO coupling ). We demonstrate that the flow of a longitudinal unpolarized current through a ballistic T and X junction with this spin-orbit coupling will induce a spin accumulation which has opposite signs for the two lateral probes and is, therefore, the principal observable signature of the spin Hall effect in these devices.  相似文献   

3.
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣。基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径。然而,在具有自旋轨道耦合的系统中,自旋流并不守恒。如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一。本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展。引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性。利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的自旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力。由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累。自旋霍尔效应已经在半导体和金属材料中被观察到。虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注。通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释。此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象。在能量简并点附近,自旋霍尔电导率和隧穿自旋电导率均会出现共振现象。当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应。  相似文献   

4.
The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin--orbit coupling have been studied numerically. It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spin--orbit coupling is presented. The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system. A transversely applied electric field does not influence the characteristic behaviour of charge- and spin-dependent properties.  相似文献   

5.
Based on the Noether's theorem, we develop systematically and rigorously the spin-dependent formulation of the conservation laws. The effect of the electronic polarization due to the spin-orbit coupling is included in the Maxwell equations. The polarization is related to the antisymmetric components of spin current, and it provides a possibility to measure the spin current directly. The variances of spin and orbit angular momentum currents imply a torque on the "electric dipole" associated with the moving electron. The dependencies of the torque on the polarization and the force on the motions of spin-polarized electrons in a two-dimensional electron gas with the Rashba spin-orbit coupling are discussed.  相似文献   

6.
We demonstrate that a transverse spin current can be generated simply by diffraction through a single slit in the spin-orbit coupling system of the two-dimensional electron gas. In the regime of spin-orbit coupling ~10(-13) eV·m, an out-of-plane component of the electron spin of up to 0.42? can be generated. Based on this effect, a novel device consisting of a grating to distill spin is designed. Two first diffraction peaks of electron carry different spins, providing a nonmagnetic version of the Stern-Gerlach experiment. The direction of the spin current can be controlled by the gate voltage with low energy cost.  相似文献   

7.
8.
自旋轨道耦合系统中的自旋流与自旋霍尔效应   总被引:2,自引:0,他引:2  
作为自旋电子学的重要研究内容,如何在固态系统中产生、操控以及探测自旋流引起了研究人员的广泛兴趣.基于自旋轨道耦合的自旋霍尔效应为在非磁性半导体中产生自旋流提供了一种有效途径.然而,在具有自旋轨道耦合的系统中,自旋流并不守恒.如何理解这点并恰当地表述相应的连续性方程,成为自旋输运研究的基本问题之一.本文主要综述自旋轨道耦合系统中自旋流与自旋霍尔效应方面的研究进展.引入SU(2)规范势后,自旋流满足协变形式的连续性方程,该方程保证了SU(2)Kubo公式在不同规范固定下的自洽性.利用SU(2)场强张量,可以直接得到自旋密度和自旋流在SU(2)外场中受到的白旋力,该力在只有U(1)磁场时对应于Stern-Gerlach力.由于依赖杂质散射的外在自旋霍尔效应很难被利用,内在自旋霍尔效应的概念被提出:在非磁半导体中,U(1)电场会诱导出自旋流并导致系统边缘处的自旋积累.自旋霍尔效应已经在半导体和金属材料中被观察到.虽然在干净的二维电子气中自旋霍尔电导率是一普适常数e/8π,但杂质对它的影响却引起了人们的高度关注.通过引入退相干效应,自旋霍尔效应中杂质效应的一些令人困惑的理论结果,则得到清晰的解释.此外,本文还将介绍具有层间隧穿的双层二维电子气中的自旋输运现象.在能量简并点附近,自旋霍尔电导率和隧穿白旋电导率均会出现共振现象.当两层间的杂质势强度存在差异时,隧穿自旋电导率随门压的变化曲线呈现出非对称性,显示出自旋二极管效应.  相似文献   

9.
An emerging field of spintronics, spin-orbitronics, aims to discover novel phenomena and functionalities originating from spin-orbit coupling in solid-state devices. The development of spin-orbitronics promises a fundamental understanding of spin physics in condensed matter, as well as smaller, faster, and far-more energy-efficient spin-based devices. Of particular importance in this field is current-induced spin-orbit torques, which trigger magnetic dynamics by the transfer of angular momentum from an atomic lattice to local magnetization through the spin-orbit coupling. The spin-orbit torque has attracted extensive attention for its fascinating relativistic and quantum mechanical nature, as well as prospective nanoelectronic applications. In this article, we review our studies on the generation and manipulation of current-induced spin-orbit torques.  相似文献   

10.
A spin device, consisting of parallel-coupled double quantum dots and three normal metal leads, is proposed to realize spin-polarized current without the help of magnetic field and magnetic material. Based on the Keldysh nonequilibrium Green function technique and equation of motion method, the spin-dependent current formula in each lead is derived. It is shown that not only a fully polarized current but also a tunable pure spin current can be obtained by modulating the structure parameters, strength of Rashba spin-orbit interaction and bias voltages properly. It further demonstrates the dependence of the spin-polarized current on the strength of the Rashba spin-orbit interaction.  相似文献   

11.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.  相似文献   

12.
A. John Peter 《Physics letters. A》2008,372(31):5239-5242
The spin dependent electron transmission through a non-magnetic III-V semiconductor symmetric well is studied theoretically so as to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy as well as the well width, within the one electron band approximation along with the spin-orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors.  相似文献   

13.
We investigate the spin Hall effect in ballistic chaotic quantum dots with spin-orbit coupling. We show that a longitudinal charge current can generate a pure transverse spin current. While this transverse spin current is generically nonzero for a fixed sample, we show that when the spin-orbit coupling time is short compared to the mean dwell time inside the dot, it fluctuates universally from sample to sample or upon variation of the chemical potential with a vanishing average.  相似文献   

14.
The prediction of intrinsic spin Hall currents by Murakami et al. and Sinova et al. raised many questions about methods of detection and the effect of disorder. We focus on a contact between a Rashba-type spin-orbit coupled region with a normal two-dimensional electron gas and show that the spin Hall currents, though vanishing in the bulk of the sample, can be recovered from the edges. We also show that the current-induced spin accumulation in the spin-orbit coupled system diffuses into the normal region and contributes to the spin current in the leads.  相似文献   

15.
We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.  相似文献   

16.
We study the spin edge states, induced by the combined effect of Bychkov-Rashba spinorbit and Zeeman interactions or of Dresselhaus spin-orbit and Zeeman interactions in a twodimensional electron system, exposed to a perpendicular quantizing magnetic field and restricted by a hard-wall confining potential. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum versus the momentum and the magnetic field. We calculate the average spin components and the average transverse position of electron. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. Depending on the type of spin-orbit coupling and the principal quantum number, the Zeeman term in the combination with spin-orbit interaction increases or decreases essentially the splitting of bulk Landau levels while it has a weak influence on the spin edge states.  相似文献   

17.
We propose a general theory of the spin-transfer effects that occur when current flows through inhomogeneous magnetic systems. Our theory does not rest on an appeal to conservation of total spin, can assess whether or not current-induced magnetization precession and switching in a particular geometry will occur coherently, and can estimate the efficacy of spin-transfer when spin-orbit interactions are present. We illustrate our theory by applying it to a toy-model twodimensional-electron-gas ferromagnet with Rashba spin-orbit interactions.  相似文献   

18.
We consider the spin edge states, induced by the combined effect of spin-orbit interaction and hard-wall confining potential, in a two-dimensional electron system exposed to a perpendicular quantizing magnetic field. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum, velocity, and average transverse position. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. It is revealed that at low magnetic fields, due to the Stark splitting of the spin-resolved edge states, the high-energy bands exhibit anti-crossings. This results in an additional structure in the behavior of the velocity of current-carrying edge states.  相似文献   

19.
In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential.  相似文献   

20.
Shijing Gong 《Physics letters. A》2009,373(42):3892-3896
The persistent spin helix discovered in intrinsic spin-orbit coupled systems previously is reexamined using the motion equations of Green's functions by considering the effect of extrinsic impurity-induced spin-orbit coupling. We find both the intrinsic and extrinsic spin-orbit couplings can increase the excitation energy of spin helix. They together can reduce drastically the lifetime of the spin helix, making it severely departure from the ideal infinite value. The effect of impurity density on spin helix is also analyzed. The results may be helpful to understand experimental measurements on spin helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号