首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
By applying non-equilibrium Green's functions in combination with density-functional theory, we investigate electronic transport properties of C60 coupled to carbon nanotubes and Li electrodes. The results show that electronic transport properties of CNT-C60-CNT and Li-C60-Li systems are completely different. Nonlinear I-V characteristic, varistor-type behavior and negative differential resistance (NDR) phenomenon are observed when electrodes are carbon nanotubes. We discuss the mechanism of I-V characteristics of CNT-C60-CNT systems in details. Our results suggest conductance, energy level of Frontier molecular orbitals, energy gap between HOMO and LUMO, the coupling between molecular orbitals and electrodes are all playing critical roles in electronic transport properties.  相似文献   

2.
The transport properties of the cage-like molecule depend on its orientation between the electrodes, but the investigation on the mechanism has not been found. Using first-principle density-functional theory (DFT) and non-equilibrium Green’s function (NEGF) formalism for quantum transport calculation, we study the electronic transport properties of C24 fullerene molecule with different orientations in Au–C24–Au two-probe system. The effects of k-point sampling on the Brillouin zone are explored. Our results show that the negative differential resistance of C24 molecule is found in such a system and can be tuned by the molecule's orientation in the two-probe system. We also proposed a mechanism for it. The I–V characteristic under bias voltage is determined. The present findings could be helpful for the application of the C24 molecule in the field of single molecular devices or nanometer electronics.  相似文献   

3.
By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the Cs2 isomers and the C82 extended molecules. The calculated results show that the C82 -C2 (3) isomer and the C82 extended molecule with C82-C2 isomer are most stable. For the all-carbon hybrid system consisting of C82-C2 extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.  相似文献   

4.
The transport properties of C14 monocyclic ring sandwiched between two Al(1 0 0) electrodes are investigated by first-principle calculations. The variation of the equilibrium conductance as the function of the separation distance between the molecule and the electrodes is studied. C14 monocyclic ring shows metallic behavior according to the calculated equilibrium conductance. Electron transmission occurs through the lowest unoccupied molecular orbital (LUMO). With gate-voltage applied, it is found that the positive and negative gate-voltages can bring very different effect on the variation of equilibrium conductance. We also calculate the effects of adsorbing other atoms on the carbon ring such as oxygen and sulfur atoms. The results indicate that adsorption of this kind of electron-accepting impurity will decrease the conductance of the system.  相似文献   

5.
Carrying out theoretical calculations using a self-consistent ab initio approach that combines the non-equilibrium Green′s function formalism with density functional theory, we investigate the effect of the center encapsulation of Li atom on the electronic transport properties of C20F20 cage sandwiched between two bulk gold electrodes. The results show that the electrical conductivity of the endohedral complex Li@C20F20 becomes better than that of the empty C20F20 in the bias voltages ranging from 0 to 1.2 V. The novel negative differential resistance behavior in the I-V characteristic curves can be observed by inserting Li atom into C20F20 cage. The mechanism for the negative differential resistance behavior of Li@C20F20 is suggested.  相似文献   

6.
The full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach was applied to study the electronic structures of the compound Eu6C60. Present calculations show that the hybridization between the Eu s, d state and the C60 π states plays an essential role in its FM exchange interactions between the 4f electrons and metallic properties.  相似文献   

7.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

8.
In this paper we report on the realization of flexible all-organic ambipolar field-effect transistors (FETs) realized on unconventional substrates, such as plastic films and textile yarns. A double layer pentacene-C60 heterojunction was used as the semiconductor layer. The contacts were made with poly(ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of soft lithography microcontact printing (μCP). Very interestingly growing C60 on a predeposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the film so it obtains n-type conduction despite the very high electron injection barrier at the interface between PEDOT:PSS and C60. As a result, it was possible to obtain all-organic ambipolar FETs and to optimize their electrical properties by tuning the thicknesses of the two employed active layers. Moreover, it will be shown that modifying the triple interface between dielectric/semiconductor/electrodes is a crucial point for optimizing and balancing injection and transport of both kinds of charge carriers. In particular, we demonstrate that using a middle contact configuration in which source and drain electrodes are sandwiched between pentacene and C60 layers allows significantly improving the electrical performance in planar ambipolar devices. These findings are very important because they pave the way for the realization of low-cost, fully flexible and stretchable organic complementary circuits for smart wearable and textile electronics applications.  相似文献   

9.
Electrochemical etching of amorphous SiC in fluoride solution was studied. Anodic dissolution and passivation are observed for p-type electrodes under dark illumination. The dissolution of p-type a-Si1−xCx is found to be under mixed transport/kinetic control; the diffusion current is of first order in fluoride concentration. Porous etching was not observed in this case. The surface finish of 6H-SiC depends on the experimental conditions; both uniform and porous etching is observed. In this paper, we report the formation of porous p-type amorphous SiC (a-Si1−xCx) films, elaborated previously by DC magnetron sputtering and analyze the porous layers (PSC) using scanning electron microscopy, spectrophotometer and photoluminescence. The crystal structures and the preparation conditions of porous SiC are shown to have an effect on the structural and electrical properties of the material obtained. SEM observation indicates that the porous a-Si1−xCx layers have shown some specific feature; a semi-cylindrical structure of the porous network has been observed.  相似文献   

10.
The effect of Cr-doping on the structural, magnetic and transport properties of perovskite manganites La0.8Ca0.2Mn1−xCrxO3 (0≤x≤0.7) has been investigated. The Curie temperature (TC) of the Cr-doped samples is almost unchanged up to 30% of Cr-doping. The Cr-doped samples, however, undergo a transition from the parent metallic state to the insulating state below TC. The dc and ac magnetization data suggest that ferromagnetic clusters induced by double exchange interaction between Cr3+ and Mn3+ ions and antiferromagnetic components driven by Cr3+/Mn4+ and Cr3+/Cr3+ interactions are present in the Cr-doped system, which is supported by comparative studies on magnetic and transport properties of LaMnO3+δ and LaMn0.75Cr0.25O3+δ.  相似文献   

11.
H. Li  X.Q. Zhang 《Physics letters. A》2008,372(23):4294-4297
The dependence of electronic transport on compressive deformation of C60 molecule is studied theoretically in this work. Brenner's “second generation” empirical potential is used to describe the many-body short-range interatomic interactions for C60 in the molecular dynamics simulations. Our results demonstrate that C60 can be compressed up to a strain ε=0.31 before collapsing. Electronic transport under an applied bias is calculated by using a self-consistent field approach coupled with non-equilibrium Green's function (NEGF) formalism. The transmission probability, conductance gap, and conductance spectrum are found to be sensitive to the compression. The peak value of conductance decreases with the increase of strain until the C60 is compressed up to a strain ε=0.31.  相似文献   

12.
Differences in complex admittance plots of β″-alumina and NASICON ceramic samples are discussed on the basis of analysis of their equivalent electrical circuit properties. The grain boundary properties could be derived from admittance plots only when relaxation time of the double layer is greater than that of the grain boundary. The importance of a proper choice of electrodes is emphasized. Certain electrodes, e.g. platinum, due to their high value of the double layer capacitance make possible such characterization. Other electrodes, e.g. graphite and gold, make it difficult in NASICON and impossible in β″-alumina because observed values of the grain boundary capacitance Cgb are much greater for β″-alumina than for NASICON samples. The reasons for high values of the Cgb in β″-alumina and smaller values of the Cgb in NASICON are discussed.  相似文献   

13.
We have investigated the magnetic and transport properties of borocarbide superconductors YNi2B2C and YPd5B3C0.4 with Yttrium partially substituted by Samarium. The upper critical fields HC2 are determined by the scaling analysis of the thermal fluctuation magnetoconductivity. Around the transition region, the thermal fluctuation magnetoconductivity can be scaled by a universal function for all applied magnetic fields. The formula HC2(T)=HC2(0)[1−(T/TC)3/2]3/2 of a narrow-band pairing mechanism gives an excellent fit to the value of upper critical field HC2(0)=7.6 T in the Y0.8Sm0.2Pd5B3C0.4 compound. The superconducting coherence length ξ is determined to be 6.58 nm, the Ginzburg-Landau parameter κ is 29 and the penetration depth λ is 191 nm.  相似文献   

14.
A series of Mn-site Co-doping samples La2/3Ca1/3Mn1−xCoxO3 (0?x?0.15) have been prepared. The structure, magnetic and transport properties of this system have been systematically investigated. All the samples showed good single phase, and the lattice parameters decreased with the increase of doping concentration x. Only one paramagnetic–ferromagnetic transition was observed. The Curie temperature TC decreases gradually and the transition width becomes wider with the increase of x. The abnormal transport properties were induced by Co doping, characterized by the double metal–insulator transitions and low-temperature minimum behavior. The present results are discussed and possible explanations were given based on the related theory and previous reported results.  相似文献   

15.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

16.
We have calculated the band structure of Ca3Co2O6 and Ca3CoNiO6 by using the self-consistent full-potential linearized augmented plane-wave method within density function theory and the generalized gradient approximation for the exchange and correlation potential. The spin-orbit interaction is incorporated in the calculations using a second variational procedure. The relation of these band structure calculations to thermoelectric transport is discussed. The results illustrate that transport is highly anisotropic with much larger mobility in the a-b plane than out of the a-b plane, and the introduction of Ni in Ca3Co2O6 alters its electronic structure and its thermoelectric transport properties.  相似文献   

17.
Samarium-fullerene intercalation compounds of nominal composition SmxC60 (x=1,2,…,6) have been synthesized by a solid-state reaction method. We obtain a Sm2.75C60 superconducting phase with orthogonal structure and a Sm6C60 phase with body-centered cubic structure. The broadening and weakening of Raman peaks of the SmxC60 compounds are due to the distortion of C60 and electron-phonon interaction. The Raman measurements reveal that the distortion of C60 decrease in SmxC60 (x=3,4,5) exposed to air, although the fulleride solids have transformed into an amorphous state. The Raman results also show that the distortion of C60 is still very large in the Sm6C60 exposed to air, or the C60 molecules have been destroyed and become some amorphous carbide.  相似文献   

18.
Experimental study of dc and ac transport properties of CuInSe2/ZnO heterostructure is presented. The current-voltage (I-V) and frequency dependent capacitance (C-f) characteristics of CuInSe2/ZnO heterostructure were investigated in the temperature range 160-393 K. The heterostructure showed non-ideal behavior of I-V characteristics with an ideality factor of 3.0 at room temperature. Temperature dependent dc conductivity studies exhibited Arrhenius type behavior and revealed the presence of trap level. The C−2-V plot measured at frequency 50 kHz had shown non-linear behavior. An increase in capacitance with temperature was observed. The capacitance-frequency characteristics exhibited a transition between low frequency and the high frequency capacitance. As the temperature was lowered the transition occurred at lower frequencies. The frequency and temperature dependent device capacitance had shown a defect state having activation energy of 108 meV.  相似文献   

19.
The effect of transition element (TE=Cr, Fe, Co, Ni, Cu, Zn) doping on the electronic transport and magnetic properties in the bilayer manganite La1.4Sr1.6Mn2O7 is studied for the same dopant concentration fixed at 2%. Doping does not cause change in structure but different behavior in magnetic and transport properties. Except for Cr, all the other dopings significantly shift the magnetic transition temperature (TC) to a lower temperature. Associated with such a decrease, the insulator-metal transition temperature (TIM) decreases and the peak resistivity (ρp) at TIM increases. Cr doping enhances TC and TIM as well as decreases ρp. Fe doping apparently has a stronger effect than Co and Ni doping. It is also indicated that Cu doping causes an anomalously large increase in ρp. These behaviors are compared with those observed in other bilayer manganites such as La1.2Sr1.8Mn2O7 as well as in La0.7Ca0.3Mn1−xTExO3.  相似文献   

20.
Choosing closed-ended armchair (5, 5) single-wall carbon nanotubes (CCNTs) as electrodes, we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes. It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CF1 and double-bonded models: the conductances of C20 dimers are markedly smaller than those of monomers. The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions. Moreover, we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally. The bonding property of the molecular junction with configuration CF1 has been analysed by calculating the Mulliken atomic charges. Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones, leading to the fact that N-doped junctions have relatively large conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号