首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, we deal with a fractional Schrödinger equation that contains the quantum Riesz-Feller derivative instead of the Laplace operator in the case of a particle moving in a potential field. In particular, this equation is solved for a free particle in terms of the Fox H-function. On the other hand, we show that from physical viewpoint, the fractional Schrödinger equation with the quantum Riesz-Feller derivative of order α, 0 < α ≤ 2 and skewness θ makes sense only if it reduces to the Laplace operator (α = 2) or to the quantum Riesz fractional derivative (θ = 0). The reason is that the quantum Riesz-Feller derivative is a Hermitian operator and possesses real eigenvalues only when α = 2 or θ = 0. We then focus on the time-independent one-dimensional fractional Schrödinger equation with the quantum Riesz derivative in the case of a particle moving in an infinite potential well. In particular, we show that the explicit formulas for the eigenvalues and eigenfunctions of the time-independent fractional Schrödinger equation that some authors recently claimed to receive cannot be valid. The problem to find right formulas is still open.  相似文献   

2.
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.  相似文献   

3.
V.I. Man'ko  G. Marmo 《Physics letters. A》2008,372(24):4364-4368
Using general construction of star-product the q-deformed Wigner-Weyl-Moyal quantization procedure is elaborated. The q-deformed Groenewold kernel determining the product of quantum observables is given in explicit form for small nonlinearities corresponding to nonlinear vibrations of classical and quantum q-oscillators. The deformation of Groenewold kernel related to general kinds of nonlinear vibrations described by f-oscillators are considered.  相似文献   

4.
Jia Liu 《Physics letters. A》2008,372(16):2830-2833
Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component Jz and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.  相似文献   

5.
We analyze the properties that manifest Hamiltonian nature of the Schrödinger equation and show that it can be considered as originating from singular Lagrangian action (with two second class constraints presented in the Hamiltonian formulation). It is used to show that any solution of the Schrödinger equation with time independent potential can be presented in the form , where the real field ?(t,xi) is some solution of nonsingular Lagrangian theory being specified below. Preservation of probability turns out to be the energy conservation law for the field ?. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics.  相似文献   

6.
C. Quesne 《Annals of Physics》2006,321(5):1221-1239
The problem of d-dimensional Schrödinger equations with a position-dependent mass is analyzed in the framework of first-order intertwining operators. With the pair (HH1) of intertwined Hamiltonians one can associate another pair of second-order partial differential operators (RR1), related to the same intertwining operator and such that H (resp. H1) commutes with R (resp. R1). This property is interpreted in superalgebraic terms in the context of supersymmetric quantum mechanics (SUSYQM). In the two-dimensional case, a solution to the resulting system of partial differential equations is obtained and used to build a physically relevant model depicting a particle moving in a semi-infinite layer. Such a model is solved by employing either the commutativity of H with some second-order partial differential operator L and the resulting separability of the Schrödinger equation or that of H and R together with SUSYQM and shape-invariance techniques. The relation between both approaches is also studied.  相似文献   

7.
Generalized virial theorem for quantum mechanical nonrelativistic and relativistic systems with translational and rotational symmetry is derived in the form of the commutator between the generator of dilations G and the Hamiltonian H. If the conditions of translational and rotational symmetry together with the additional conditions of the theorem are satisfied, the matrix elements of the commutator [G,H] are equal to zero on the subspace of the Hilbert space. Normalized simultaneous eigenvectors of the particular set of commuting operators which contains H, J 2, J z and additional operators form an orthonormal basis in this subspace. It is expected that the theorem is relevant for a large number of quantum mechanical N-particle systems with translational and rotational symmetry.  相似文献   

8.
9.
It is shown that Heisenberg's uncertainty principle can be derived from algebraic properties of observables, without involving Hilbert space formalism of quantum mechanics. Namely, if m(A,? ) denotes the statisctical second moment of an observable A measured in the state ? and we define m([A,B]),?)=12(m(A+B,?)?m(A,?) ?(B,?)), then the property of oddness with respect to observables m([A,?B],?) =?m([A,B),?) implies an abstract from of Heisenberg's inequality. If, in addition, there is a canonical pair of observables A,B such that m([A,B],[?,?ψ]) =?m([A,B],[?,ψ]), then the classical uncertainty principle of Heisenberg follows. These results allow us to formulate and derive Heisenberg's principle in the framework of axiomatic quantum mechanics from an equational assumption about the profitability function of the system.  相似文献   

10.
We discuss the role of generalized Heisenberg algebras (GHA) in obtaining an algebraic method to describe physical systems. The method consists in finding the GHA associated to a physical system and the relations between its generators and the physical observables. We choose as an example the infinite square-well potential for which we discuss the representations of the corresponding GHA. We suggest a way of constructing a physical realization of the generators of some GHA and apply it to the square-well potential. An expression for the position operator x in terms of the generators of the algebra is given and we compute its matrix elements.  相似文献   

11.
Complex Bohmian mechanics is introduced to investigate the validity of a trajectory interpretation of the uncertainty principles ΔqΔp??/2 and ΔEΔt??/2 by replacing probability mean values with time-averaged mean values. It is found that the ?/2 factor in the uncertainty relation ΔEΔt??/2 stems from a quantum potential whose time-averaged mean value taken along any closed trajectory with a period T=2π/ω is proved to be an integer multiple of ?ω/2 for one-dimensional systems.  相似文献   

12.
We present a divergence-free WKB theory, which is a new semiclassical theory modified by nonperturbative quantum corrections. Conventionally, the WKB theory is constructed upon a trajectory that obeys the bare classical dynamics expressed by a quadratic equation in momentum space. Contrary to this, the divergence-free WKB theory is based on a higher-order algebraic equation in momentum space, which represents a dressed classical dynamics. More precisely, this higher-order algebraic equation is obtained by including quantum corrections to the quadratic equation, which is the bare classical limit. An additional solution of the higher-order algebraic equation enables us to construct a uniformly converging perturbative expansion of the wavefunction. Namely, our theory removes the notorious divergence of wavefunction at a turning point from the WKB theory. Moreover, our theory is able to produce wavefunctions and eigenenergies more accurate than those given by the traditional WKB method. In addition, the divergence-free WKB theory that is based on the cubic equation allows us to construct a uniformly valid wavefunction for the nonlinear Schrödinger equation (NLSE). A recent short letter [T. Hyouguchi, S. Adachi, M. Ueda, Phys. Rev. Lett. 88 (2002) 170404] is the opening of the divergence-free WKB theory. This paper presents full formalism of this theory and its several applications concerning wavefunction and eigenenergy to show that our theory is a natural extension of the traditional WKB theory that incorporates nonperturbative quantum corrections.  相似文献   

13.
We show that for quantum tomography there exist two mutually conjugating intermediate coordinate-momentum entangled states |η1,η2λ,ν and |?1,?2σ,τ. The Radon transforms of the Wigner operators are just the pure-state density matrices and , respectively. As a result, the tomogram of quantum states is the module-square of their wave function in these representations. A new convenient formalism of quantum tomogram is thus established.  相似文献   

14.
We explain how Feynman diagrams and the functional integral for quasi-Hermitian theories “know” about the metric η. The answer turns out be that their derivation is based fundamentally on the Heisenberg equations of motion and the canonical equal-time commutation relations, which only take their standard form when matrix elements are evaluated using η.  相似文献   

15.
Two sets of infinitely many exceptional orthogonal polynomials related to the Wilson and Askey–Wilson polynomials are presented. They are derived as the eigenfunctions of shape invariant and thus exactly solvable quantum mechanical Hamiltonians, which are deformations of those for the Wilson and Askey–Wilson polynomials in terms of a degree ?   (?=1,2,…?=1,2,) eigenpolynomial. These polynomials are exceptional in the sense that they start from degree ??1??1 and thus not constrained by any generalisation of Bochner's theorem.  相似文献   

16.
Forsu(1, 1)-symmetric Hamiltonians of quantum mechanical systems (e.g. single-mode quantum harmonic oscillator, radial Schrödinger equation for Coulomb problem or isotropic quantum harmonic oscillator, etc.), the Heisenberg algebra of phase-space variables in two dimensions satisfy the bilinear commutation relation [ip,x]=1 (in normal units). Also there are different realizations ofsu(1, 1) by the generators of quantum harmonic oscillator algebra. We seek here the forms of deformed Heisenberg algebras (bilinear in deformedx and ip) associated with deformedsu(1, 1)-symmetric Hamiltonians. These forms are not unique in contrast to the undeformed case; and these forms are obtained here by considering different realizations of the deformedsu(1, 1) algebra by deformed oscillator algebras (satisfying different bilinear relations in deformed creation and annihilation operators), and then imposing different conditions (e.g. the deformed Heisenberg algebra of the form of the undeformed one, the form of realizations of the deformedsu(1, 1) algebra by deformed phase-space variables being the same as that ofsu(1, 1) algebra by undeformed phase-space variables, etc.), assuming linear relations between deformed phase-space variables and deformed creation-annihilation operators (as it is done in the undeformed case), we get different Heisenberg algebras. These facts are revealed in the case of a two-body Calogero model in its centre of mass frame (and for no other integrable systems in one-dimension having potential of the formV(x i ? xj).  相似文献   

17.
The Moyal product is used to cast the equation for the metric of a non-Hermitian Hamiltonian in the form of a differential equation. For Hamiltonians of the form p2+V(ix)p2+V(ix) with V polynomial this is an exact equation. Solving this equation in perturbation theory recovers known results. Explicit criteria for the hermiticity and positive definiteness of the metric are formulated on the functional level.  相似文献   

18.
We extend a theory of first order ? corrections to Gutzwiller’s trace formula for systems with a smooth potential to systems with discrete symmetries and, as an example, apply the method to the two-dimensional hydrogen atom in a uniform magnetic field. We exploit the C4v-symmetry of the system in the calculation of the correction terms. The numerical results for the semiclassical values will be compared with values extracted from exact quantum mechanical calculations. The comparison shows an excellent agreement and demonstrates the power of the ? expansion method.  相似文献   

19.
Yi Gao  Shi-Jie Xiong 《Physics letters. A》2008,372(25):4630-4633
We investigate a model of quantum register composed of N qubits coupling with itinerant electrons by adopting the Born-Markov master equation. Decoherence induced by this coupling is studied for various initial states. By solving the master equation for N=4 with the numerical integration, we obtain time evolution of fidelity and linear entropy of the register. The decoherence rate of this model is proportional to 2|J| with J being the exchange coupling strength of electrons and qubits. We also investigate the decoherence free subspace which provides a possible routine of applications in quantum computation.  相似文献   

20.
Stochastic and bistochastic matrices providing positive maps for spin states (for qudits) are shown to form semigroups with dense intersection with the Lie groups IGL(n,R) and GL(n,R) respectively. The density matrix of a qudit state is shown to be described by a spin tomogram determined by an orbit of the bistochastic semigroup acting on a simplex. A class of positive maps acting transitively on quantum states is introduced by relating stochastic and quantum stochastic maps in the tomographic setting. Finally, the entangled states of two qubits and Bell inequalities are given in the framework of the tomographic probability representation using the stochastic semigroup properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号