首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two known two-dimensional SUSY quantum mechanical constructions—the direct generalization of SUSY with first-order supercharges and higher-order SUSY with second-order supercharges—are combined for a class of 2-dim quantum models, which are not amenable to separation of variables. The appropriate classical limit of quantum systems allows us to construct SUSY-extensions of original classical scalar Hamiltonians. Special emphasis is placed on the symmetry properties of the models thus obtained—the explicit expressions of quantum symmetry operators and of classical integrals of motion are given for all (scalar and matrix) components of SUSY-extensions. Using Grassmanian variables, the symmetry operators and classical integrals of motion are written in a unique form for the whole Superhamiltonian. The links of the approach to the classical Hamilton-Jacobi method for related “flipped” potentials are established.  相似文献   

2.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola-Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.  相似文献   

3.
B. Midya 《Physics letters. A》2009,373(45):4117-4122
Some exactly solvable potentials in the position dependent mass background are generated whose bound states are given in terms of Laguerre- or Jacobi-type X1 exceptional orthogonal polynomials. These potentials are shown to be shape invariant and isospectral to the potentials whose bound state solutions involve classical Laguerre or Jacobi polynomials.  相似文献   

4.
According to the Heisenberg correspondence principle, in the classical limit, quantum matrix element of a Hermitian operator reduces to the coefficient of the Fourier expansion of the corresponding classical quantity. In this article, such a quantum-classical connection is generalized to the relativistic regime. For the relativistic free particle or the charged particle moving in a constant magnetic field, it is shown that matrix elements of quantum operators go to quantities in Einstein’s special relativity in the classical limit. Especially, matrix element of the standard velocity operator in the Dirac theory reduces to the classical velocity. Meanwhile, it is shown that the classical limit of quantum expectation value is the time average of the classical variable.  相似文献   

5.
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method.  相似文献   

6.
We obtain the solutions of two-dimensional singular oscillator which is known as the quantum Calogero-Sutherland model both in cartesian and parabolic coordinates within the framework of quantum Hamilton Jacobi formalism. Solvability conditions and eigenfunctions are obtained by using the singularity structures of quantum momentum functions under some conditions. New potentials are generated by using the first two states of singular oscillator for parabolic coordinates.  相似文献   

7.
V.I. Man'ko  G. Marmo 《Physics letters. A》2008,372(24):4364-4368
Using general construction of star-product the q-deformed Wigner-Weyl-Moyal quantization procedure is elaborated. The q-deformed Groenewold kernel determining the product of quantum observables is given in explicit form for small nonlinearities corresponding to nonlinear vibrations of classical and quantum q-oscillators. The deformation of Groenewold kernel related to general kinds of nonlinear vibrations described by f-oscillators are considered.  相似文献   

8.
The quantum dissipative motion of wave packets in confined systems with polynomial potentials is numerically investigated in the context of the Schrödinger-Langevin-Kostin equation. Oscillatory patterns are studied in detail and they confirm the validity of the correspondence principle. The transition to the stationary state is also discussed.  相似文献   

9.
The formalism of geometric algebra can be described as deformed super analysis. The deformation is done with a fermionic star product, that arises from deformation quantization of pseudoclassical mechanics. If one then extends the deformation to the bosonic coefficients of superanalysis one obtains quantum mechanics for systems with spin. This approach clarifies on the one hand the relation between Grassmann and Clifford structures in geometric algebra and on the other hand the relation between classical mechanics and quantum mechanics. Moreover it gives a formalism that allows to handle classical and quantum mechanics in a consistent manner.  相似文献   

10.
11.
We show in this paper that the electron’s quantum dynamics in hydrogen atom can be modeled exactly by quantum Hamilton-Jacobi formalism. It is found that the quantizations of energy, angular momentum, and the action variable ∫p dq are all originated from the electron’s complex motion, and that the shell structure observed in hydrogen atom is indeed originated from the structure of the complex quantum potential, from which the quantum forces acting upon the electron can be uniquely determined, the stability of atomic configuration can be justified, and the electron’s complex trajectories can be derived accordingly. Based on the derived electron’s trajectory, we can explain why the electron appears at some positions with large probability, while at some other positions with small probability. The positions with maximum probability predicted by standard quantum mechanics are found to be just the stable equilibrium points of the electron’s non-linear complex dynamics. The electron’s trajectories in hydrogen atom are discovered to be very diverse and strongly state-dependent; some of them are open and non-periodic, while some are closed and periodic. Over such a great diversity of orbits, commensurability condition ensuring the existence of closed orbit will be derived and the de Broglie’s standing wave pattern will be identified. Along the investigation of the electron’s orbits in hydrogen atom, we will also clarify why old quantum mechanics using the concept of classical orbit can correctly predict the energy quantization of hydrogen atom and meanwhile why it is not applicable to general quantum system. Finally, the internal mechanism of how the precessing, non-conical eigen-trajectories can evolve continuously to the classical, non-precessing, conical orbits as n → ∞ is explained in detail.  相似文献   

12.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

13.
Sudden death of entanglement: Classical noise effects   总被引:2,自引:0,他引:2  
When a composite quantum state interacts with its surroundings, both quantum coherence of individual particles and quantum entanglement will decay. We have shown that under vacuum noise, i.e., during spontaneous emission, two-qubit entanglement may terminate abruptly in a finite time [T. Yu, J.H. Eberly, Phys. Rev. Lett. 93 (2004) 140404], a phenomenon termed entanglement sudden death (ESD). An open issue is the behavior of mixed-state entanglement under the influence of classical noise. In this paper we investigate entanglement sudden death as it arises from the influence of classical phase noise on two qubits that are initially entangled but have no further mutual interaction.  相似文献   

14.
We present a divergence-free WKB theory, which is a new semiclassical theory modified by nonperturbative quantum corrections. Conventionally, the WKB theory is constructed upon a trajectory that obeys the bare classical dynamics expressed by a quadratic equation in momentum space. Contrary to this, the divergence-free WKB theory is based on a higher-order algebraic equation in momentum space, which represents a dressed classical dynamics. More precisely, this higher-order algebraic equation is obtained by including quantum corrections to the quadratic equation, which is the bare classical limit. An additional solution of the higher-order algebraic equation enables us to construct a uniformly converging perturbative expansion of the wavefunction. Namely, our theory removes the notorious divergence of wavefunction at a turning point from the WKB theory. Moreover, our theory is able to produce wavefunctions and eigenenergies more accurate than those given by the traditional WKB method. In addition, the divergence-free WKB theory that is based on the cubic equation allows us to construct a uniformly valid wavefunction for the nonlinear Schrödinger equation (NLSE). A recent short letter [T. Hyouguchi, S. Adachi, M. Ueda, Phys. Rev. Lett. 88 (2002) 170404] is the opening of the divergence-free WKB theory. This paper presents full formalism of this theory and its several applications concerning wavefunction and eigenenergy to show that our theory is a natural extension of the traditional WKB theory that incorporates nonperturbative quantum corrections.  相似文献   

15.
D.A. Kulikov 《Physics letters. A》2008,372(48):7105-7108
The solvable quantum mechanical model for the relativistic two-body system composed of spin-1/2 and spin-0 particles is constructed. The model includes the oscillator-type interaction through a combination of Lorentz-vector and Lorentz-tensor potentials. The analytical expressions for the wave functions and the order of the energy levels are discussed.  相似文献   

16.
S.-A. Yahiaoui 《Annals of Physics》2007,322(11):2733-2744
A systematic and unified treatment to connect the Schrödinger equation for generalized Morse and Pöschl-Teller potentials, generated by supersymmetry quantum mechanics, is used. An algebraic treatment of bound-state problems is presented.  相似文献   

17.
A connection between classical non-radiating sources and free-particle wave equations in quantum mechanics is rigorously made. It is proven that free-particle wave equations for all spins have currents which can be defined and which are non-radiating electromagnetic sources. It is also proven that and the advanced and retarded fields are exactly equal for these sources. Implications of these results are discussed.  相似文献   

18.
Newton-Leibniz integration rule only applies to commuting functions of continuum variables, while operators made of Dirac’s symbols (ket versus bra, e.g., |q〉〈q| of continuous parameter q) in quantum mechanics are usually not commutative. Therefore, integrations over the operators of type |〉〈| cannot be directly performed by Newton-Leibniz rule. We invented an innovative technique of integration within an ordered product (IWOP) of operators that made the integration of non-commutative operators possible. The IWOP technique thus bridges this mathematical gap between classical mechanics and quantum mechanics, and further reveals the beauty and elegance of Dirac’s symbolic method and transformation theory. Various applications of the IWOP technique, including constructing the entangled state representations and their applications, are presented.  相似文献   

19.
C. Wetterich 《Annals of Physics》2010,325(7):1359-1389
Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.  相似文献   

20.
A new family of 2-component vector-valued coherent states for the quantum particle motion in an infinite square well potential is presented. They allow a consistent quantization of the classical phase space and observables for a particle in this potential. We then study the resulting position and (well-defined) momentum operators. We also consider their mean values in coherent states and their quantum dispersions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号