首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an efficient scheme for realizing squeezing for a cavity mode. In the scheme, a collection of ladder-type three-level atoms are trapped in a cavity and driven by two classical fields. Under certain conditions, the cavity field deterministically evolves to a squeezed state. The scheme can also be used for conditional generation of superpositions of different squeezed vacuum states.  相似文献   

2.
Dynamical behaviour of entanglement between the cavity mode and a three-level atom in the configuration is studied by making use of log-negativity. The influence of initial temperature of the thermal field and detuning on the entanglement is investigated. It is found that the maximal values of entanglement decreases with the temperature of the thermal field and can be controlled by the defaming.  相似文献   

3.
We investigate the entanglement swapping of continuous state and the two-mode squeezed vacuum which is exposed variable using the pair coherent state as the input in a phase decoherence environment as the quantum channel. By adopting the log-negativity as the measure of entanglement, we analyze how entanglement of the two initial states and the phase decoherence environment affect the entanglement swapping quality.  相似文献   

4.
We investigate the entanglement of pair cat states in the phase damping channel by adopting the log-negativity and then study the possible violations of Bell's inequalities for the pair cat states in terms of the Wigner representation in phase space based upon parity measurement and displacement operation.  相似文献   

5.
We show that the bipartite entanglement in the two-mode quantum kicked top can reveal the underlying chaotic and regular structures in phase space: namely, the entanglement displays a rapid rise after a very short time for an initial spin coherent state centred in a chaotic region of the phase space, whereas the entanglement displays a periodic modulation for the coherent state centred at an elliptic fixed point. The quantum-classical correspondence is investigated by studying the mean and maximal linear entropy.  相似文献   

6.
We experimentally demonstrate a non-local generation of entanglement from two independent photonic sources in an ancilla-free process. Two bosons (photons) are entangled in polarization space by steering into a novel interferometer setup, in which they have never met each other. The entangled photons are delivered to polarization analyzers in different sites, respectively, and a non-local interaction is observed. Entanglement is further verified by the way of the measured violation of a CHSH type Bell's inequality with S-values of 2.54 and 27 standard deviations. Our results will shine a new light onto the understanding of how quantum mechanics works, have possible philosophic consequences on the one hand and provide an essential element for quantum information processing on the other hand. Potential applications of our results are briefly discussed.  相似文献   

7.
熊恒娜  郭红 《中国物理快报》2007,24(7):1805-1808
We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer between the field and the atoms has an exact period for any given squeezing. We also find that the maximum achievable entanglement of the atomic subsystem is a simple increasing function of r.For sufficiently large squeezing parameter r, it is possible for the atoms to be entangled into a Bell state at half the periodic time points.  相似文献   

8.
We show that entanglement concentration of unknown atomic entangled states is achieved via the implementation of entanglement swapping based on Raman interaction in cavity QED. A maximally entangled state is obtained from a pair of partially entangled states probabilistically. Due to Raman interaction of two atoms with a cavity mode and an external driving field, the influence of atomic spontaneous emission has been eliminated. Because of the virtual excitation of the cavity mode, the decoherence of cavity decay and thermal field is neglected.  相似文献   

9.
It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime.  相似文献   

10.
A potential scheme is proposed for generating cluster states of many trapped ions in thermal motion, in which the effective Hamiltonian does not involve the external degree of freedom and thus the scheme is insensitive to the external state, allowing it to be thermal state. The required experimental techniques of the schemes are within the scope that can be obtained in the ion-trap setup.  相似文献   

11.
We consider evolution of quantum eigenstates in the presence of level crossing under slow cyclic change of environmental parameters. We find that exotic holonomies, indicated by exchange of the eigenstates after a single cyclic evolution, can arise from non-Abelian gauge potentials among non-degenerate levels. We illustrate our arguments with solvable two and three level models.  相似文献   

12.
A simple and scalable scheme is proposed to generate a n-qubit W state in a trapped-ion system without the Lamb-Dicke limit. The n-qubit W state can be generated by the interaction between the ions and the laser field if the collective mode is initially prepared in the single-phonon state and each ion is in the ground state. The scheme only requires a single laser and avoids laser manipulation of the individual ion. The time required to complete the process decreases with the number of ions. The present scheme is not limited to small values of the LD parameter, which greatly enhances operation speeds.  相似文献   

13.
In the presence of degenerate two-photon transitions the problem of the interaction between two two-level atoms and a single-mode is considered. Near resonance case, a closed form of the analytic solution for the wave function is obtained. The entanglement between an atom and field in the interacting system is studied by using the change in atomic and field entropies. The relationship between entropy changes and concurrence entanglement is discussed. Our results show that the behavior of the entropy change in agreement with the behavior of the concurrence to measure the entanglement between two subsystem structures.  相似文献   

14.
A scheme is proposed for generating three-dimensional maximally entangled states for two atoms. In the scheme the atoms are trapped in a two-mode cavity. The scheme only requires a single resonant interaction of the atoms with the cavity modes. Therefore, the scheme is very simple and required interaction time is very short, which is important in view of decoherence.  相似文献   

15.
The nonclassical squeezing effect emerging from a nonlinear coupling model (generalized Jaynes–Cummings model) of a two-level atom interacting resonantly with a bimodal cavity field via two-photon transitions is investigated in the rotating wave approximation. Various Bloch coherent initial states (rotated states) for the atomic system are assumed, i.e., (i) ground state, (ii) excited state, and (iii) linear superposition of both states. Initially, the atomic system and the field are in a disentangled state, where the field modes are in Glauber coherent states via Poisson distribution. The model is numerically tested against simulations of time evolution of the based Heisenberg uncertainty relation variance and Shannon information entropy squeezing factors. The quantum state purity is computed for the three possible initial states and used as a criterion to get information about the entanglement of the components of the system. Analytical expression of the total density operator matrix elements at t > 0 shows, in fact, the present nonlinear model to be strongly entangled, where each of the definite initial Bloch coherent states is reduced to statistical mixtures. Thus, the present model does not preserve the modulus of the Bloch vector.  相似文献   

16.
Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degeneracy points, the quantum information is encoded in two logic states of charge basis. The generation of the multi-qubit cluster state can be achieved step by step on a pair of nearest-neighbor qubits. Considering effective long-rang coupling, we provide an efficient way to one-step generating of a highly entangled cluster state, in which the qubit-qubit coupling is mediated by the cavity mode. Our quantum operations are insensitive to the initial state of the cavity mode by removing the influence of the cavity mode via the periodical evolution of the system. Thus, our operation may be against the decoherence from the cavity.  相似文献   

17.
Nonclassical features of the superposition of two coherent states which are π/2 out of phase are discussed, such as sub-Poissonian photon statistics and quadrature squeezing, as well as negativity of the Wigner function. Special nonclassicality is found in the special state where the relative phase of superposition has relationship with the average photon number. The analysis of the amount of entanglement is also presented for the related two-mode entangled coherent states.  相似文献   

18.
This communication is an enquiry into the circumstances under which concurrence and phase entropy methods can give an answer to the question of quantum entanglement in the composite state when the photonic band gap is exhibited by the presence of photonic crystals in a three-level system. An analytic approach is proposed for any three-level system in the presence of photonic band gap. Using this analytic solution, we conclusively calculate the concurrence and phase entropy, focusing particularly on the entanglement phenomena. Specifically, we use concurrence as a measure of entanglement for dipole emitters situated in the thin slab region between two semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser structures. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency and different cavity parameters. We demonstrate how fluctuations in the phase and number entropies affected by the presence of the photonic-band-gap. The outcomes are illustrated with numerical simulations applied to GaAs. Finally, we relate the obtained results to instances of any three-level system for which the entanglement cost can be calculated. Potential experimental observations in solid-state systems are discussed and found to be promising.  相似文献   

19.
A scheme is proposed for generating maximally entangled states for three atoms trapped in a two-mode cavity. The scheme is based on resonant atom-cavity interaction and linear optics elements. The fidelity of the entangled state is not affected by both the decoherence and detection inefficiencies. The scheme works beyond the strong-coupling regime, which is important for high-fidelity entanglement engineering under realistic conditions.  相似文献   

20.
We show that two evanescently coupled χ(2) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号