首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The competition between femtosecond laser pulse induced optical breakdown and femtosecond laser pulse filamentation in condensed matter is studied both experimentally and numerically using water as an example. The coexistence of filamentation and breakdown is observed under tight focusing conditions. The development of the filamentation process from the creation of a single filament to the formation of many filaments at higher pulse energy is characterized systematically. In addition, strong deflection and modulation of the supercontinuum is observed. They manifest themselves at the beginning of the filamentation process, near the highly disordered plasma created by optical breakdown at the geometrical focus. Received: 9 July 2002 / Revised version: 15 November 2002 / Published online: 19 March 2003 RID="*" ID="*"Corresponding author. Fax: +1-418/6562-623, E-mail: wliu@phy.ulaval.ca  相似文献   

2.
Ti:sapphire femtosecond laser pulse filamentation in competition with optical breakdown in condensed matter is studied both experimentally and numerically using water as an example. Strong random deflection and modulation of the supercontinuum under tight focusing conditions were observed. They manifest the beginning of the filamentation process near the highly disordered plasma created by optical breakdown at the geometrical focus. Received: 13 June 2002 / Revised version: 16 August 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-418/656-2623, E-mail: wliu@phy.ulaval.ca  相似文献   

3.
We report an experiment to demonstrate the crucial effect of the so-called background reservoir during the propagation of femtosecond laser pulses in air. The background reservoir was blocked by allowing only the filament to pass through a pinhole generated by the filament itself in an aluminum foil. We observed that the filamentation process is terminated immediately after the pinhole. Consequently, to achieve long-range filamentation, it is necessary to maintain the dynamic energy exchange between the reservoir and the self-foci.  相似文献   

4.
Femtosecond laser filamentation is particularly interesting for remote sensing pollutant in the atmosphere. In this work, we investigate the local shot-to-shot stability of the filament induced fluorescence of nitrogen in air. It is found that the root-mean square fluctuation of the fluorescence signal is at least one order of magnitude lower than that of the linear propagation case. In practice, it would contribute to improve the robustness of long distance spectroscopic analysis of the fluorescence of pollutant molecules inside the filament. We further point out that this unique property of filament induced fluorescence spectroscopy is because of the intensity clamping, a profound phenomenon of filamentation.  相似文献   

5.
An adiabatic hot dusty plasma (containing non-inertial adiabatic electron and ion fluids, and negatively charged inertial adiabatic dust fluid) is considered. The basic properties of arbitrary amplitude dust-acoustic (DA) solitary waves, which exist in such an adiabatic hot dusty plasma, are explicitly examined by the pseudo-potential approach. To compare the basic properties (critical Mach number, amplitude and width) of the DA solitary waves observed in a dusty plasma containing adiabatic electron, ion and dust fluids with those observed in a dusty plasma containing isothermal electron and ion fluids and adiabatic dust fluid, it has been found that the adiabatic effect of inertia-less electron and ion fluids has significantly modified the basic properties of the DA solitary waves, and that on the basic properties of the DA solitary waves, the adiabatic effect of electron and ion fluids is much more significant than that of the dust fluid.  相似文献   

6.
Smain Younsi 《Physics letters. A》2008,372(31):5181-5188
The problem of nonlinear variable charge dust acoustic waves in a dusty plasma with trapped ions is revisited. The correct non-isothermal ion charging current is presented for the first time based on the orbit motion limited (OML) approach. The variable dust charge is then expressed in terms of the Lambert function and we take advantage of this new transcendental function to investigate nonlinear localized dust acoustic waves in a charge varying dusty plasma with trapped ions more rigorously.  相似文献   

7.
The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted.  相似文献   

8.
We investigate numerically the influence of the pressure on femtosecond filamentation in air. We show that femtosecond filamentation occurs at low pressure and compute the features of the plasma channel generated in the wake of the pulse. We discuss the influence of the pulse duration, chirp and input beam shape on the length of the plasma channels. These calculations constitute a prerequisite for laboratory experiments over short distances as well as for vertical femtosecond filamentation at high altitude on which light detection and ranging techniques or lightning protection rely.  相似文献   

9.
Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities.  相似文献   

10.
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.  相似文献   

11.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   

12.
Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.  相似文献   

13.
Nonlinear processes in magnetized plasma are very much important for the proper understanding of many space and astrophysical events. One of the most important type of study has been done in the domain of Alfven waves. Here we show that a Galerkin type approximation of the DNLS (Derivative Nonlinear Schrödinger) equation describing such wave propagation leads to a new type of nonlinear dynamical systems, very much rich in chaotic properties. Starting with the detailed analysis of fixed points and stability zones we make an in depth study of the unstable periodic orbits, which span the whole attractor. Next the birth of a Hopf bifurcation is identified and normal form, limit cycle analyzed. In the course of our study the detailed structure of the attractor is analyzed. A possibility of internal crisis is also indicated. These results will help in the choice of the plasma parameters for the actual physical situation.  相似文献   

14.
New electrostatic instabilities in the plasma shock front are reported. These instabilities are driven by the electro- static field which is caused by charge separation and the parameter gradients in a plasma shock front. The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically. There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation. The real frequencies of both unstable waves are similar to the electron electrostatic wave, and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction. The dependence of growth rates on the electric field and parameter gradients is also presented.  相似文献   

15.
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.  相似文献   

16.
The purpose of this research is to investigate the formation of zonal flows that can lead to the enhanced confinement of plasma in tokamaks. We show that zonal flows can be effectively formed by resonance triad interactions in the process of the inverse cascade. We discuss what energy sources are more effective for the formation of zonal flows.  相似文献   

17.
18.
The linear eigenstate problem of generalized magnetohydrodynamics(MHD) equations in a cylindrical plasma is discussed. The effects of finite frequency and finite pressure perturbation lead to an important result: the resonant layer of the shear Alfven waves is not a singular layer. In this paper, the MHD equations are reduced to four differential equations of first order for perturbed quantities. An analytical dispersion relation for a homogeneous plasma cylinder is obtained. The K. Appert theory is a limiting case of our theory  相似文献   

19.
In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev–Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence.  相似文献   

20.
We present a theoretical investigation of the excitation of multiple electrostatic wakefields by the ponderomotive force of a short electromagnetic pulse propagating through a dense plasma. It is found that the inclusion of the quantum statistical pressure and quantum electron tunneling effects can qualitatively change the classical behavior of the wakefield. In addition to the well-known plasma oscillation wakefield, with a wavelength of the order of the electron skin depth (λe=c/ωpe, which in a dense plasma is of the order of several nanometers, where c is the speed of light in vacuum and ωpe is the electron plasma frequency), wakefields in dense plasmas with a shorter wavelength (in comparison with λe) are also excited. The wakefields can trap electrons and accelerate them to extremely high energies over nanoscales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号