首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The speciation of diverse elements in salmon egg cell cytoplasm was performed by a surfactant-mediated HPLC/ICP-MS hyphenated system. In the present experiment, an ODS column coated with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), which is a zwitterionic bile acid derivative, was employed as a surfactant-mediated separation column, and ICP-MS was used as an element-selective detector. The present surfactant-mediated HPLC allowed us to separate large and small molecules within 10 min; large molecules, such as proteins, were eluted within 2.5 min, while small molecules were eluted after 2.5 min, but within 10 min. In the present experiment, Fe, Cu, and Zn in egg cell cytoplasm were observed mostly in species with large molecular weights, indicating that these elements are contained as metalloproteins or metalloenzymes in egg cell cytoplasm. On the contrary, it was found that P, S, Mo, and halogens in egg cell cytoplasm were contained as small molecules or inorganic ions. The major species of P in egg cell cytoplasm was identified as the phosphate ion (PO4(3-)). Molybdenum, Cl, and Br in egg cell cytoplasm were molybdate (MoO4(2-), chloride (Cl-), and bromide (Br-) ions, respectively.  相似文献   

2.
An automatic system, based on the on-line coupling of high-performance liquid chromatography (HPLC) separation, post column microwave digestion, and cold-vapor atomic fluorescence spectrometry (CVAFS) detection, was proposed for the speciation analysis of four mercury compounds. Post column microwave digestion, in the presence of potassium persulfate (in HCl), was applied in the system to improve the conversion efficiency of three organic mercury compounds into inorganic mercury. Parameters influencing the on-line digestion efficiency and the separation effect were optimized. To avoid water vapor and methanol entering into the atomic fluorescence detector, ice-water mixture bath was used to cool the microwave-digested sample solution. Four mercury species including inorganic mercury chloride (MC), methylmercury chloride (MMC), ethylmercury chloride (EMC) and phenylmercury chloride (PMC) were baseline separated within 13 min by using RP C18 column with a mobile phase of 50% (v/v) methanol containing 10 mmol l−1 tetrabutyl ammonium bromide and 0.1 mol l−1 sodium chloride pumped at 1.2 ml min−1. Seafood samples, composed of three gastropod species and two bivalve species from Yantai port, China, have been analyzed by the proposed method. Dogfish muscle (DORM-2) was analyzed to verify the accuracy of the method and the result was in good agreement with the certified value.  相似文献   

3.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

4.
Room temperature ionic liquids can be considered as environmentally benign solvents with unique physicochemical properties. Ionic liquids can be used as extractant phases in SDME, being compatible with chromatographic systems. A single-drop microextraction method was developed for separation and preconcentration of mercury species (MeHg+, EtHg+, PhHg+ and Hg2+), which relies on the formation of the corresponding dithizonates and microextraction of these neutral chelates onto a microdrop of an ionic liquid. Afterwards, the separation and determination were carried out by high-performance liquid chromatography with a photodiode array detector. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were: microextraction time, 20 min; stirring rate, 900 rpm; pH, 11; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]); drop volume, 4 μL; and no sodium chloride addition. Limits of detection were between 1.0 and 22.8 μg L−1 for the four species of mercury, while the repeatability of the method, expressed as relative standard deviation, was between 3.7 and 11.6% (n = 8). The method was finally applied to the determination of mercury species in different water samples.  相似文献   

5.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

6.
A microcolumn liquid chromatographic method with cold-vapour atomic absorption spectrometric detection was developed for the speciation of mercury compounds in waste water. The sample solution containing mercury at the 4-ng level was injected onto a preconcentration column (27 mn × 0.51 mm i.d.) packed with Develosil-ODS (30 μm) and eluted with cysteine-acetic acid through a separation column (125 mm × 0.5 mm i.d.) packed with STR-ODS-H (5 μm). After oxidation, tin(II) chloride in sodium hydroxide solution was used to reduce mercury compounds to mercury. The generated mercury vapour was swept from a gas-liquid separator by argon into the detector cell and monitored at 253.7 nm. Mercury(II) chloride, methylmercury chloride and ethylmercury chloride, were well resolved and the determination was completed in less than 16 min. The method was successfully applied to the speciation of mercury compounds in waste water.  相似文献   

7.
Mercury vapor is effectively absorbed via inhalation and easily passes through the blood–brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of variance. As for zinc, the copper concentrations only changed significantly in the cerebellum. Metal components of metal-binding proteins of soluble fractions in the brain sections were analyzed by size-exclusion high-performance liquid chromatography (HPLC) connected with ICP-MS. From the results of HPLC/ICP-MS analyses, it was concluded that the mercury components of MT-III and high molecular weight metal-binding proteins in the cerebellum of MT-I, II null mice were much higher than those of wild-type mice. It was suggested that MT-III is associated with the storage of mercury in conditions lacking MT-I, and MT-II. It was also suggested that the physiological role of MT-III and some kind of high molecular weight proteins might be impaired by exposure to mercury vapor and lack of MT-I and MT-II.  相似文献   

8.
《Electrophoresis》2018,39(14):1763-1770
A pretreatment method of dispersive solid‐phase extraction (DSPE) along with back‐extraction followed by CE‐UV detector was developed for the determination of mercury species in water samples. Sulfhydryl‐functionalized SiO2 microspheres (SiO2−SH) were synthesized and used as DSPE adsorbents for selective extraction and enrichment of three organic mercury species namely ethylmercury (EtHg), methylmercury (MeHg), and phenylmercury (PhHg), along with L‐cysteine (L‐cys) containing hydrochloric acid as back‐extraction solvent. Several main extraction parameters were systematically investigated including sample pH, amount of adsorbent, extraction and back‐extraction time, volume of eluent, and concentration of hydrochloric acid. Under optimal conditions, good linearity was achieved with correlation coefficients over 0.9990, in the range of 4−200 μg/L for EtHg, and 2−200 μg/L for MeHg and PhHg. The LODs were obtained of 1.07, 0.34, and 0.24 μg/L for EtHg, MeHg, and PhHg, respectively, as well as the LOQs were 3.57, 1.13, and 0.79 μg/L, respectively, with enrichment factors ranging from 109 to 184. Recoveries were attained with tap and lake water samples in a range of 62.3−107.2%, with relative standard deviations of 3.5–10.1%. The results proved that the method of SiO2−SH based DSPE coupled with CE‐UV was a simple, rapid, cost‐effective, and eco‐friendly alternative for the determination of mercury species in water samples.  相似文献   

9.
Two speciated isotope dilution (SID) approaches consisting of a single-spike (SS) method and a double-spike (DS) method including a reaction/transformation model for the correction of inadvertent transformations affecting mercury species were compared in terms of accuracy, method performance, and robustness for the simultaneous determination of methylmercury (MeHg), inorganic mercury (iHg), and total mercury (HgT) concentrations in five biological Standard Reference Materials (SRMs). The SRMs consisted of oyster and mussel tissue materials displaying different mercury species concentration levels and different textural/matrix properties including freeze-dried (FD) materials (SRMs 1566b, 2976, and 2977) and cryogenically prepared and stored fresh-frozen (FF) materials (SRMs 1974a, 1974b). Each sample was spiked with (201)iHg (Oak Ridge National Laboratory, ORNL) and Me(202)Hg (Institute for Reference Materials and Measurements. IRMM-670) solutions and analyzed using alkaline microwave digestion, ethylation, and gas chromatography inductively coupled plasma mass spectrometry (GC/ICP-MS). The results obtained by the SS-SID method suggested that FF and FD materials are not always commutable for the simultaneous determination of iHg, MeHg, and HgT, due to potential transformation reactions resulting probably from the methodology and/or from the textural/matrix properties of the materials. These transformations can occasionally significantly affect mercury species concentration results obtained by SS-SID, depending on the species investigated and the materials considered. The results obtained by the DS-SID method indicated that the two classes of materials were commutable. The simultaneous and corrected concentrations of iHg, MeHg, and HgT obtained by this technique were not found to be statistically different form the certified and reference concentration together with their expanded uncertainty budgets for the five SRMs investigated, exemplifying the robustness, the accuracy, and the improved commutability of this method compared to SS-SID measurements.  相似文献   

10.
Trace amounts of inorganic mercury (Hg2+) and methylmercury cations (MeHg2+) were adsorbed quantitatively from acidic aqueous solution onto a column packed with immobilized dithizone on microcrystalline naphthalene. The trapped mercury was eluted with 10 ml of 7 mol L–1 hydrochloric acid solution. The Hg2+ was then directly reduced with tin (II) chloride, and volatilized mercury was determined by cold vapor atomic absorption spectrometry (CVAAS). Total mercury (Hgt) was determined after decomposition of MeHg+ into Hg2+. Hg2+ and MeHg+ cations were completely recovered from the water with a preconcentration factor of 200. The relative standard deviation obtained for eight replicate determinations at a concentration of 0.3 g L–1 was 1.8%. The procedure was applied to analysis of water samples, and the accuracy was assessed via recovery experiment.  相似文献   

11.
The properties and behaviour of Hg depend on both the oxidation state and the chemical form: the bioavailability, toxicity, persistence and accumulation of mercury in the food web are strongly influenced by chemical speciation. The present work aims to determine the chemical forms of mercury present in soil and to evaluate the fraction of mercury in soil solution available to plants. In order to do this, we analyzed eight samples of contaminated soils with Hg concentrations ranging from 1.31 to 21.7 mg kg−1, collected from different depths (0–10 and 40–50 cm) close to an abandoned industrial site in Val Basento (southern Italy). Two innovative analytical techniques were used: HPLC–ICP-MS and diffusive gradient in thin films (DGT). The analytical procedure was validated using ERM 580-certified sediment and spiked samples in the case of HPLC–ICP-MS, and by a performance test in the case of DGT. In all samples, the only species found in soil and soil solution was MeHg+ and Hg2+. In soil, the MeHg+/Hgtot ratio ranged from 0.05% to 0.82%; total mercury in soil solution was less than 0.01% of total mercury in soil. The percentage of MeHg+ in soil solution varied considerably (from 0% to 50%), with a maximum concentration of 0.02 mg L−1. The root available concentration evaluated by DGT is comparable to the total mercury content of the soil solution measured by HPLC–ICP-MS. The DGT results suggest that all mercury in solution is available for uptake in DGT, and that mercury is supplied from soil to solution. However, for all samples the soluble and root available (DGT-labile) fractions of mercury are generally very low with respect to the total mercury concentration. This study confirmed that both HPLC–ICP-MS and DGT techniques are suitable tools for the estimation of Hg root availability and in assessing the risk from contaminated soils.  相似文献   

12.
Tracking of Hg2+ in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg2+ were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg2+ in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.  相似文献   

13.
The purpose of this study is to investigate the influence of nickel, which is an alloying element in commonly used metallic biomaterials, on the biomaterials mineralization process. An electrochemical method was developed to quantify this metal ion in osteoblast-like cell culture medium (OST) by performing adsorptive cathodic stripping voltammetry (CSV) with dimethylglyoxime (DMG) at a mercury film microelectrode (MFM). The optimized analytical conditions and the square-wave CSV parameters for the analysis are: DMG concentration: 5.00 × 10−4 mol L−1; ammonium chloride buffer: 0.10 mol L−1 (pH 9.2); frequency: 50 Hz, amplitude 20 mV; step: 2 mV; adsorption time: 10 s, deposition potential: −0.70 V and reduction potential: −1.20 V. The limit of detection was 7.70 × 10−9 mol L−1 for an adsorption time of 10 s. The results achieved by CSV using the MFM were compared to those obtained by atomic absorption spectrometry (AAS) to ensure the reliability of the electrochemical method. The mineralization process was evaluated by biochemical and histochemical assays.  相似文献   

14.
A mild, efficient and convenient extraction method of using 2-mercaptoethanol contained extractant solution combined with an incubator shaker for determination of mercury species in biological samples by HPLC–ICP-MS has been developed. The effects of the concentration of 2-mercaptoethanol, the composition of the extractant solution and the shaking time on the efficiency of mercury extraction were evaluated. The optimization experiments indicated that the quantitative extraction of mercury species from biological samples could be achieved by using 0.1% (v/v) HCl, 0.1% (v/v) 2-mercapoethanol and 0.15% (m/v) KCl extractant solution in an incubator shaker for shaking overnight (about 12 h) at room temperature. The established method was validated by analysis of various biological certified reference materials, including NRCC DOLT-3 (dogfish liver), IAEA 436 (tuna fish), IAEA MA-B-3/TM (garfish filet), IAEA MA-M-2/TM (mussel tissue), GBW 08193 (bovine liver) and GBW 08572 (prawn). The analytical results of the reference materials were in good agreement with the certified or reference values of both methyl and total mercury, indicating that no distinguishable transformation between mercury species had occurred during the extraction and determination procedures. The limit of detection (LOD) for methyl (CH3Hg+) and inorganic mercury (Hg2+) by the method are both as 0.2 μg L−1. The relative standard deviation (R.S.D.s) for CH3Hg+ and Hg2+ are 3.0% and 5.8%, respectively. The advantages of the developed extraction method are that (1) it is easy to operate in HPLC–ICP-MS for mercury species determination since the extracted solution can be directly injected into the HPLC column without pH adjustment and (2) the memory effect of mercury in the ICP-MS measurement system can be reduced.  相似文献   

15.
In this study, a method of pretreatment and speciation analysis of mercury by dispersive liquid–liquid microextraction along with CE was developed. The method was based on the fact that mercury species including methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and Hg(II) were complexed with 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophobic chelates and l ‐cysteine could displace 1‐(2‐pyridylazo)‐2‐naphthol to form hydrophilic chelates with the four mercury species. Factors affecting complex formation and extraction efficiency, such as pH value, type, and volume of extractive solvent and disperser solvent, concentration of the chelating agent, ultrasonic time, and buffer solution were investigated. Under the optimal conditions, the enrichment factors were 102, 118, 547, and 46, and the LODs were 1.79, 1.62, 0.23, and 1.50 μg/L for MeHg, EtHg, PhHg, and Hg(II), respectively. Method precisions (RSD, n = 5) were in the range of 0.29–0.54% for migration time, and 3.08–7.80% for peak area. Satisfactory recoveries ranging from 82.38 to 98.76% were obtained with seawater, lake, and tap water samples spiked at three concentration levels, respectively, with RSD (n = 5) of 1.98–7.18%. This method was demonstrated to be simple, convenient, rapid, cost‐effective, and environmentally benign, and could be used as an ideal alternative to existing methods for analyzing trace residues of mercury species in water samples.  相似文献   

16.
Jairo L. Rodrigues 《Talanta》2010,80(3):1158-162
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there are a limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 μL) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, l-cysteine and HCl was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) l-cysteine, 0.06 mol L−1 ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 μg L−1 and 0.1 μg L−1 for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury.  相似文献   

17.
Andac M  Asan A  Bekdemir Y  Kutuk H  Isildak I 《Talanta》2003,60(1):191-197
A new, simple and rapid spectrophotometric FI method for the accurate and precise determination of Hg(II) in pharmaceutical preparations has been developed. The method is based on the measuring the decrease of absorbance intensity of p-nitrobenzoxosulfamate (NBS) due to the complexation with Hg(II). The absorption peak of the NBS, which is decreased linearly by addition of Hg(II), occurs at 430 nm in 2×10−4 mol l−1 HNO3 as a carrier solution. Optimization of chemical and FI variables has been made. A micro column consisting of several packing materials applied instead of reaction coil was also investigated. A background level of Fe(III) maintained in reagent carrier solution with NBS was found useful for sensitivity and selectivity. Under the optimized conditions, the sampling rate was over 100 h−1, the calibration curve obtained were linear over the range 1-10 μg ml−1, the detection limit was lower than 0.2 μg ml−1 for a 20 μl injection volume, and the precision [Sr=1% at 2 μg ml−1 Hg(II) (n=10)] was found quite satisfactory. Application of the method to the analysis of Hg(II) in pharmaceutical preparations resulted a good agreement between the expected and found values.  相似文献   

18.
Liquid chromatography with time-of-flight mass spectrometry (LC-TOF-MS) method has been developed for simultaneous confirmation by accurate mass measurement and quantitative determination of antibiotics (enrofloxacin, oxolinic acid, flumequine, erythromycin), fungicides (malachite green MG, leucomalachite green LMG) and parasiticide (emamectin benzoate) residues in edible portion of salmon. Confirmation of chemotherapeutant residues has been based on the system of identification points (IPs) established in the Commission Decision 2002/657/EC concerning the use of mass spectrometry (MS) techniques. A validation study on matrix is presented evaluating accuracy in terms of precision (λppm 0.83-1.15) and trueness (0.22-0.70 Da). Limits of detection (LODs) and limits of quantification (LOQs) were in ranges of 1-3 and 3-9 μg/kg, below the maximum residue limits (MRLs) established in current EU legislation (100-200 μg/kg) for these chemotherapeutants. Considering the EU guidelines, decision limits (CCα) and detection capabilities (CCβ) were determined (ranges of 103-218 and 107-234 μg/kg, respectively) for authorised substances. For no authorised compounds (MG and LMG), LODs were 2 and 1 μg/kg, respectively, but exceed the MRPL (minimum required performance limit) established in the legislation which corresponds to the sum of MG and LMG (2 μg/kg). Acceptable intra-day and inter-day variability, in terms of relative standard deviation (R.S.D.) of the analytical method, were obtained (2-15%). Linearity was demonstrated from the LOQs of the analytes to 600 μg/kg (r > 0.9991). The method has involved an extraction procedure based on solid-liquid extraction (SLE) with recoveries higher than 80% for most target chemotherapeutants, with exception of enrofloxacin (40%).  相似文献   

19.
Two new mononuclear mercury(II) alkynyl complexes containing substituted bithiazole unit [R-CC-HgMe] (2) and [R-CC-Hg-CC-R] (3) (R = 4,4′-di(tert-butyl)-2,2′-bithiazol-5-yl) were prepared in good yields by mercuration of 4,4′-di(tert-butyl)-5-ethynyl-2,2′-bithiazole (1) at room temperature via the dehydrohalogenation reaction of MeHgCl and HgCl2 with terminal acetylene R-CCH. The structures of the title compounds were characterized by NMR and IR spectroscopy, FAB mass spectrometry, X-ray crystallography and luminescence spectra. A new protocol for derivatization of inorganic and organic mercury(II) ions to mono- and dialkynyl mercury(II) compounds followed by extraction into dichloromethane is suggested, which can be effectively analyzed by HPLC technique using UV detection. The proposed procedure can offer a new opportunity for the simultaneous determination of inorganic Hg(II) and MeHg(II) in aqueous solutions.  相似文献   

20.
A highly sensitive and accurate method for preconcentration and determination of ultra trace amounts of inorganic mercury and organomercury compounds in different water samples is proposed. The preconcentration is achieved using octadecyl silica (C18) extraction disks modified with 1,3-bis(2-cyanobenzene)triazene (CBT). The retained analytes as their triazenide complexes on the solid phase was eluted with 10 ml acetonitrile and measured by reversed-phase high-performance liquid chromatography (RP-HPLC). Type and amount of eluent, pH, amount of CBT, flow rates of sample solution and eluent have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions, such as Cu2+, Mn2+, Fe2+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, Ba2+, Pb2+, K+ and Na+ usually present in water samples on the recovery of the analytes has also been investigated. The enrichment factor of 100 was obtained for all mercury species and the analytical detection limits of phenylmercury, methylmercury and Hg2+ were found as 0.8, 1.0 and 1.3 ng l− 1, respectively. Stability of mercury species after extraction on the modified disks was studied and the results showed that complexes collected on the disks were stable for at least 5 days. The proposed method has been applied to the quantitative determination of mercury species in natural and synthetic water samples with recoveries more than 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号