首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

2.
Due to the high performance of glassy carbon in the aspects of mechanical strength, electrical conductivity and high corrosion resistance, etc., glassy carbon has been widely used in the electrochemistry. A new form of glassy carbon, glassy carbon microsphere, was utilized to couple with ionic liquid in preparing a new electrochemiluminescent platform for Ru(bpy)3Cl2. Room temperature ionic liquid has been proposed to be very interesting and efficient pasting binder to replace the non conductive organic binders for the fabrication of composite paste electrode. Attributed to the special characteristics of glassy carbon microspheres and room temperature ionic liquid [N-octylpyridium tetrafluoroborate (OPFP)], this new electrochemiluminescent sensor exhibited excellent electrochemiluminescent performance in Ru(bpy)32+ solution. We first found that fentanyl citrate could increase the ECL of Ru(bpy)32+, hence an ECL approach was developed for the determination of fentanyl citrate based on this glassy carbon microspheres based electrochemiluminescent platform with high sensitivity. Under the optimized conditions, the enhanced electrochemiluminescent intensity versus fentanyl citrate concentration was linear in the range of 1.0 × 10−8 to 1.0 × 10−4 mol L−1 with a detection limit of 8.5 × 10−9 mol L−1, and the relative standard deviation for 1.0 × 10−6 mol L−1 fentanyl citrate was 1.90% (n = 10). This protocol has extended the application scopes of glassy carbon material and promoted the application of glassy carbon microspheres in electroanalysis.  相似文献   

3.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

4.
Guo Z  Feng F  Hou Y  Jaffrezic-Renault N 《Talanta》2005,65(4):1052-1055
Bismuth film electrode (BiFE) was shown to be an attractive alternative to common mercury film electrode (MFE) for anodic stripping voltammetric measurements. In this study, bismuth film, that was in situ deposited onto glassy carbon electrode, was used to detect zinc content of milkvetch, used in traditional Chinese medicine. Variables affecting the response have been evaluated and optimized. Experimental results showed a high response, with a good linearity (between 0.5 × 10−6 mol L−1 and 3 × 10−6 mol L−1) a good precision (R.S.D. = 3.58%) and a low detection limit (9.6 × 10−9 mol L−1 with a 120 s anodic). The anodic stripping performance makes the bismuth film electrode very desirable for measurements of trace nutritive element zinc in milkvetch and should impart possible restrictions on the use of mercury electrode.  相似文献   

5.
Gendi Jin 《Talanta》2009,80(2):858-1080
A new petentiometric method to determine peroxide hydrogen and glucose had been studied. This method had been applied on the petentiometric determination of peroxide hydrogen and glucose in the total ionic strength adjustment buffer (TISAB) (pH 7.5) solution with the glassy electrode modified by the calix[4]arene. The glassy carbon electrode covered with the calix[4]arene depended on the H2O2 concentration in the range of log[H2O2] from −3.3 to −1.2 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 65.6 ± 3 mV and the detection limit of peroxide hydrogen was 4.0 × 10−5 mol L−1. The glassy carbon electrode covered with the calix[4]arene depended on the glucose concentration in the range of log[glucose] from −3.6 to −2.8 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 50.2 ± 2 mV and the detection limit of glucose was 2.0 × 10−5 mol L−1. The electrode had the good selectivity, sensitivity, stability and repeatability.  相似文献   

6.
Quintino MS  Araki K  Toma HE  Angnes L 《Talanta》2006,68(4):1281-1286
The performance of a glassy carbon electrode modified with a porphyrin film formed by the [Co(TPyP){Ru(bipy)2Cl}4](TFMS)5·H2O complex for the analysis of sodium metabisulfite in pharmaceuticals is described. The sensor can be rapidly and easily prepared by drop-casting of a microliter volume of a diluted methanolic solution of the complex onto the electrode surface. The modified electrode with a supramolecular cobalt porphyrin film led to more favorable responses than the bare electrode. This can be ascribed to the much faster electron transfer processes to the analyte mediated by the tetraruthenated porphyrin and to the protection of the electrode against fouling. The association of the amperometric sensor with the batch injection analysis technique led to results that combine good repeatability of the current responses (relative standard deviation of 0.94% for 30 measurements), wide linear dynamic range (2.5 × 10−7 mol L−1 to 5.0 × 10−4 mol L−1), high sensitivity and low limits of detection (8.1 × 10−8 mol L−1) and quantification (2.7 × 10−7 mol L−1). The system was successfully applied to sodium metabisulfite quantification in commercial samples of injection formulations of sodium (or potassium) diclofenac. The results compared well with those obtained by the polarographic method.  相似文献   

7.
Yang Y  Wang Z  Yang M  Li J  Zheng F  Shen G  Yu R 《Analytica chimica acta》2007,584(2):268-274
A novel and sensitive electrochemical DNA biosensor based on nanoparticles ZrO2 and multi-walled carbon nanotubes (MWNTs) for DNA immobilization and enhanced hybridization detection is described. The MWNTs/nano ZrO2/chitosan-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides were immobilized to the GCE. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using electroactive daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity and complementary DNA detection sensitivity. The response signal increases linearly with the increase of the logarithm of the target DNA concentration in the range of 1.49 × 10−10 to 9.32 × 10−8 mol L−1 with the detection limit of 7.5 × 10−11 mol L−1 (S/N = 3). The linear regression equation is I = 32.62 + 3.037 log CDNA (mol L−1) with a correlation coefficient value of 0.9842. This is the first application of carbon nanotubes combined with nano ZrO2 to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization.  相似文献   

8.
In this study, an hybrid material obtained by the intercalation of a gemini surfactant between the layers of smectite-type clay, was fully characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and N2 adsorption-desorption experiments (BET method). To ascertain the intercalation process of the starting clay by the dimeric surfactant, the permselectivity and ion exchange properties of the organoclay were investigated by ion exchange voltammetry using [Fe(CN)6]3− and [Ru(NH3)6]3+ as redox probes, by the means of a clay film-modified electrode. Due to its organophilic character, the surfactant-intercalated complex was evaluated as electrode modifier for the accumulation of methylparathion (MP) pesticide. The electroanalytical procedure involves two steps: preconcentration under open-circuit followed by voltammetric detection by square wave voltammetry: the peak current obtained (after 5 min preconcentration in 4 × 10−5 mol L−1 MP) on a glassy carbon electrode coated by a thin film of the modified clay was more than five times higher than that exhibited by the same substrate covered by a film of the pristine clay. This opens the way to the development of a sensitive method for the detection of the pesticide. Many parameters that can affect the stripping response (surfactant loading of the hybrid material, film composition, pH of the detection medium, preconcentration time, electrolysis potential and duration as well as some other instrumental parameters) were systematically investigated to optimize the sensitivity of the organoclay-modified electrode. After optimization, a linear calibration curve for MP was obtained in the concentration range from 4 × 10−7 to 8.5 × 10−6 mol L−1 in acetate buffer (pH 5), with a detection limit of 7 × 10−8 mol L−1 (signal-to-noise ratio equal to 3). The interference effect of various inorganic ions likely to influence the stripping determination of the pesticide was also examined, and the described method was applied to spring water analysis.  相似文献   

9.
Di J  Zhang F 《Talanta》2003,60(1):31-36
This paper described the determination of trace manganese using linear sweep voltammetry at a pretreatment glassy carbon electrode. The glassy carbon electrode pretreated by electrochemical method in the 0.1 mol l−1 NaOH solution greatly improved the electrode responsibility in the determination of manganese(II). The barrier to the detection of low manganese concentration was overcome by means of autocatalytic effect of manganese oxide deposited on the electrode in advance. Under the optimum experiments condition (0.04 mol l−1 NH3-NH4Cl buffer solution, pH 9.0), the linear range was 4×10−8 to 1×l0−6 mol l−1 Mn(II) for linear sweep voltammetry and 1×10−9 to 4×10−8 mol l−1 Mn(II) for convolution voltammetry. The relative standard deviation for 2×10−8 mol l−1 Mn(II) is 3.4%. The proposed method is simple, rapid, sensitive and selective. It had been applied to the determination of trace manganese in samples with satisfactory results.  相似文献   

10.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

11.
Mehretie S  Admassie S  Hunde T  Tessema M  Solomon T 《Talanta》2011,85(3):1376-1382
A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0 × 10−6-1.0 × 10−4 mol L−1 and 4.0 × 10−6-3.2 × 10−4 mol L−1, with detection limits of 4.0 × 10−7 mol L−1 and 1.2 × 10−6 mol L−1 for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.  相似文献   

12.
Zhao L  Tao Y  Yang X  Zhang L  Oyama M  Chen X 《Talanta》2006,70(1):104-110
Electrogenerated chemiluminescences (ECLs) of alkaloids, such as berberine, trigonelline, allantoin and betaine, were studied in an aqueous alkaline buffer solution (pH 9.5), based on tris(2,2′-bipyridine)ruthenium(II) [Ru(bpy)32+] immobilized in organically modified silicates (ORMOSILs) film on a glassy carbon electrode (GCE). The immobilized Ru(bpy)32+ showed good electrochemical and photochemical activities. In a flow system, the eluted alkaloids were oxidized on the modified GCE, and reacted with immobilized Ru(bpy)32+ at the potential of +1.50 V (versus Ag/AgCl). The luminescence with λmax 610 nm was caused by a reaction of electrolytically formed Ru(bpy)33+ with an oxidized amine group to generate Ru(bpy)32+*. The determination limit was 5 × 10−6 mol L−1, 8 × 10−6 mol L−1, 2.0 × 10−5 mol L−1 and 5.0 × 10−5 mol L−1 for berberine, trigonelline, allantoin and betaine at S/N 3, respectively. In addition, the factors affecting the determination of the four alkaloids were also studied.  相似文献   

13.
Ding SN  Xu JJ  Zhang WJ  Chen HY 《Talanta》2006,70(3):572-577
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+)-Zirconia-Nafion composite modified glassy carbon disk electrode as a solid-state electrochemiluminescence (ECL) detector is successfully applied to an electrophoretic microchip system with a wall-jet configuration. Pharmaceuticals such as tramadol, lidocaine and ofloxacin were selected to characterize the performance of this microchip capillary electrophoresis (CE)-ECL detection system. Voltammetric and ECL behaviors of immobilized Ru(bpy)32+ were investigated in lidocaine system. Influences of the separation electric field to cyclic voltammograms (CVs) of the immobilized Ru(bpy)32+ were also investigated. Tramadol, lidocaine and ofloxacin can be baseline separated without any additives. The detection limits (S/N = 3) were 2.5 × 10−5 mol L−1 for tramadol, 5.0 × 10−6 mol L−1 for lidocaine, 1.0 × 10−5 mol L−1 for ofloxacin under the sample injection of picoliters, and the linear ranges were from 5.0 × 10−5 to 2.5 × 10−3 mol L−1 for tramadol, 1.0 × 10−5 to 1.0 × 10−3 mol L−1 for lidocaine, and 1.0 × 10−5 to 2.5 × 10−3 mol L−1 for ofloxacin, respectively.  相似文献   

14.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

15.
A poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes composite modified electrode (polyNiTSPc/MWNTs) was fabricated by electropolymerization of NiTSPc on MWNTs-modified glassy carbon electrode (GCE). The modified electrode was found to be able to greatly improve the emission of luminol electrochemiluminescence (ECL) in a solution containing hydrogen peroxide. Glucose oxidase (GOD) was immobilized on the surface of polyNiTSPc/MWNTs modified GC electrode by Nafion to establish an ECL glucose sensor. Under the optimum conditions, the linear response range of glucose was 1.0 × 10−6 to 1.0 × 10−4 mol L−1 with a detection limit of 8.0 × 10−8 mol L−1 (defined as the concentration that could be detected at the signal-to-noise ratio of 3). The ECL sensor showed an outstanding well reproducibility and long-term stability. The established method has been applied to determine the glucose concentrations in real serum samples with satisfactory results.  相似文献   

16.
Zhang Y  Zheng J 《Talanta》2008,77(1):325-330
An ionic liquid modified carbon paste electrode (IL/CPE) had been fabricated by using hydrophilic ionic liquid 1-amyl-3-methylimidazolium bromide ([AMIM]Br) as a modifier. The IL/CPE was characterized by scanning electron microscope and voltammetry. Electrochemical behavior of rutin at the IL/CPE had been investigated in pH 3.29 Britton-Robinson (B-R) buffer solution by cyclic voltammetry (CV) and square wave voltammetry (SWV). The experimental results suggested that the modified electrode exhibited an electrocatalytic activity toward the redox of rutin. The electron transfer coefficient (α) and the standard rate constant (ks) of rutin at the modified electrode were calculated. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 4.0 × 10−8 to 1.0 × 10−5 mol L−1 (r = 0.9998), with a detection limit of 1.0 × 10−8 mol L−1 (S/N = 3). The relative standard deviation (R.S.D.) for six times successful determination of 8.0 × 10−7 mol L−1 rutin was 1.2%. The proposed method was applied to determine rutin in tablet and urine sample. In addition, the IL/CPE exhibited a distinct advantage of simple preparation, surface renewal, good reproducibility and good stability.  相似文献   

17.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

18.
Yan Wang  Zhen-zhen Chen 《Talanta》2010,82(2):534-621
This report described the direct voltammetric detection of peroxynitrite (ONOO) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0 × 10−6 to 3.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−7 mol L−1 (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro.  相似文献   

19.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-cyanobenzene)triazene (CBT) for highly selective determination of platinum(II) (in PtCl42− form) is developed. The electrode showed a good Nernstian response (29.8 ± 0.3 mV decade−1) over a wide concentration range (1.0 × 10−6 to 1.0 × 10−2 mol L−1). The limit of detection was 5.0 × 10−7 mol L−1. The electrode has a response time of about 40 s, and it can be used for at least 1 month without observing any considerable deviation from Nernstian response. The proposed electrode revealed an excellent selectivity toward platinum(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions, and it could be used in the pH range of 3.2-5.1. The practical utility of the electrode has been demonstrated by its use in determination of platinum ion in, alloy, tap, mineral and river water samples.  相似文献   

20.
A novel optical sensor based on a redox reaction for the determination of iodide has been developed. The optode membrane is constructed by immobilization of methyltrioctylammonium chloride on triacetylcellulose polymer. The exchange of chloride as counter ion with iodate in the membrane changes the color to yellow, when it is placed in acidic solution of iodide. The sensor can readily be regenerated by 0.1 mol L−1 NaOH in less than 15 s. The optode has a linear range of 3.94 × 10−6 to 5.51 × 10−5 mol L−1 of iodide ions with a limit of detection 7.44 × 10−7 mol L−1. The relative standard deviation for eight replicate measurements of 3.94 × 10−6 and 1.57 × 10−5 mol L−1 of iodide was 2.83 and 1.38%, respectively. The sensor was successfully applied to the determination of iodide in tablet, powdered milk and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号