首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haghighi B  Kurd SF 《Talanta》2004,64(3):688-694
A flow injection method on the basis of gas phase molecular absorption is described for the sequential determination of ammonium and nitrate. Two hundred microliters of sample solution is injected into the flow line. For ammonium determination, the sample zone is directed to a line in which reacts with NaOH (13 M) and produces ammonia. But for nitrate determination, the sample zone is passed through the on-line copperized zinc (Zn/Cu) reduction column and produces ammonium ion and in the follows ammonia. The produced ammonia in both cases is purged into the stream of N2 carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then is swept into a flow through cell, which has been positioned in the cell compartment of an UV-Vis spectrophotometer. The absorbance of the gaseous phase is measured at 194 nm. Under selected conditions for sequential analysis of ammonium and nitrate, linear relations were found between the peak heights of absorption signals and concentrations of ammonium (10-650 μg ml−1) and nitrate (20-800 μg ml−1). The limit of detections for ammonium and nitrate analysis were 8 and 10 μg ml−1, respectively. The relative standard deviations of repeated measurements of 50 μg ml−1 of ammonium and nitrate were 2.0, 2.9%, respectively. Maximum sampling rate was about 40 samples/h. The method was applied to the determination of ammonium in pharmaceutical products and the sequential determination of ammonium and nitrate in spiked water samples.  相似文献   

2.
A simpler UV-vis spectrophotometric method was investigated for hydroquinone (HQ) determination using KMnO4 as oxidizing agent for conversion of HQ to p-benzoquinone (BQ) as well as signal enhancer. Various parameters such as analytical wavelength, stability time, temperature, pH, solvent effect and interference of chemicals were checked and parameters optimized by using 1 μg ml−1 standard solution of HQ. Beer's Law was applicable in the range of 0.07-2 μg ml−1 and 0.005-0.05 μg ml−1 at 245.5 nm and at 262 nm for aqueous standard solutions of HQ with linear regression coefficient value of 0.9978 and 0.9843 and detection limit of 0.021 μg ml−1 and 0.0016 μg ml−1 HQ, respectively. Standard deviation of 1.7% and 2.4% was true for 1 μg ml−1 and 0.03 μg ml−1 HQ solution (n = 11) run at respective wavelengths. The method was successfully applied to dilute waste photographic developer samples for free HQ determination.  相似文献   

3.
Quanmin Li  Tiantian Zhang 《Talanta》2007,71(1):296-302
It is the first time that boron is determined in the presence of a little methanol by discoloring spectrophotometry in this paper. A russety product can be formed by the reaction between glycine (Gly) and sodium 1,2-naphthoquinone-4-sulfonate (NQS) in alkaline solution. When boron is added to the solution, the system will be discolored, and the addition of a little methanol will improve the discoloration. Beer's law is obeyed in the range of boron concentrations of 0.86-43.24 μg ml−1 at the maximal discoloring wavelength of 382 nm. The equation of linear regression is A = −0.07581-86.79186C (mol l−1), with a linearly correlation coefficient of 0.9979. The detection limit is 0.80 μg ml−1 and R.S.D. is 4.2%. The method is successfully applied to the determination of boron in pharmaceutical and biological samples. The average recoveries are in the range of 98.2-104.1%. Analytical results obtained with this novel method are satisfactory.  相似文献   

4.
Fan J  Wang A  Feng S  Wang J 《Talanta》2005,66(1):236-243
A new sequential injection spectrophotometric method was proposed for the determination of metoclopramide and tetracaine hydrochloride. The method was based on the detection of an unstable red intermediate compound resulting from the reaction of metoclopramide or tetracaine hydrochloride with potassium dichromate, in the presence of sodium oxalate, in sulfuric acid solution. The related reaction mechanisms of this new method have been studied. The experimental conditions were optimized for the stopped-flow and continuous-flow sequential injection models. For continuous flow, the linear range for determination of metoclopramide, the detection limit and the sampling frequency were 13-130 μg ml−1, 9.4 μg ml−1 and 40 samples per hour, respectively. For stopped flow, they were 3-42 μg ml−1, 1.0 μg ml−1 and 18 h−1, respectively. Adopting the continuous-flow model for tetracaine hydrochloride, the linear range was 25-300 μg ml−1, and the detection limit was 18.0 μg ml−1 with sampling frequency of 40 h−1. This method has been used to determine metoclopramide and tetracaine hydrochloride in pharmaceutical preparations, and the results are compared with those determined by the pharmacopoeia method. Statistical analysis reveals that there was no evidence of significant difference between the methods.  相似文献   

5.
Nanometer-sized fluorescent particles have been successfully synthesized. A synchronous fluorescence method, with high sensitivity and selectivity, has been developed for rapid determination of protein with functionalized CdS as a fluorescence probe. When Δλ=260 nm, maximum synchronous fluorescence is produced at 274 nm at pH 7.0. Under optimal conditions, the calibration graphs are linear over the range 0.1-3.0 μg ml−1 for bovine serum albumin (BSA), 0.1-11.0 μg ml−1 for γ-globulin (γ-G) and 0.1-1.4 μg ml−1 for human serum albumin (HSA), respectively. Limits of determination were 0.01 μg ml−1 for BSA, 0.019 μg ml−1 for γ-G and 0.021 μg ml−1 for HSA, respectively. The relative standard deviations of seven replicate measurements were 1.8% for 1.0 μg ml−1 BSA, 2.2% for 1.0 μg ml−1 γ-G and 2.3% for 1.0 μg ml−1 HSA.  相似文献   

6.
A new, accurate, sensitive and fast reversed-phase high-performance liquid chromatography (RP-HPLC) as an analytical method for the quantitative determination of 11 drugs in human urine was worked out, optimized and validated. The objects of analysis were imipenem (IMP), paracetamol (PAR), dipyrone (DPR), vancomycin (VCM), amikacin (AMK), fluconazole (FZ), cefazolin (CFZ), prednisolone (PRE), dexamethasone (DEX), furosemide (FUR) and ketoprofen (KET) belonging to four different groups (antibiotics, analgesic, demulcent and diuretic). For HPLC analysis, diode array (DAD) and fluorescence (FL) detectors were used. The separation of analyzed compounds was conducted by means of a LiChroCART® Purospher® C18e (125 mm × 3 mm, particle size 5 μm) analytical column with LiChroCART® LiChrospher® C18 (4 mm × 4 mm, particle size 5 μm) pre-column with gradient elution. Analyzed drugs were determined within 20 min. The mobile phase was comprised of various proportions of methanol, acetonitrile and 0.05% trifluoroacetic acid in water. AMK was separated and determined from human urine using ortho-phthaldialdehyde-3-mercaptopropionic acid (OPA-3-MPA) as a fluorescent reagent by RP-HPLC-FL. The following retention times for drugs IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET in human urine were found: 4.01 min, 4.86 min, 6.71 min, 8.14 min, 9.46 min, 10.01 min, 10.90 min, 13.34 min, 14.06 min, 16.03 min and 18.98 min, respectively. Excellent linearity was obtained for compounds in the range of concentration: 0.35-42 μg ml−1, 0.5-45 μg ml−1, 4.5-38 μg ml−1, 0.25-25 μg ml−1, 0.5-35 μg ml−1, 0.25-22 μg ml−1, 0.03-52 μg ml−1, 0.15-25 μg ml−1, 0.25-28 μg ml−1, 0.05-18 μg ml−1 and 0.15-35 μg ml−1 for IMP, PAR, DPR, VCM, AMK, FZ, CFZ, PRE, DEX, FUR and KET, respectively. The limits of detection (LOD) and limits of quantification (LOQ) for analyzed drugs were calculated in all cases and recovery studies were also performed. Ten human urine samples obtained from patients treated in hospital have been tested. In analyzed samples, one or more drugs from the 11 examined drugs were detected. The concentrations of examined drugs in urine samples ranged between: 1.5-12 μg ml−1 of PAR, 5.2-11.5 μg ml−1 of DPR, 0.13-9.5 μg ml−1 of CFZ and 0.1-8 μg ml−1 of FUR. This method can be successfully applied to routine determination of all these drugs in human urine samples.  相似文献   

7.
A novel flow-injection chemiluminescence method for the determination of DNA at ultra-trace level has been established. In 0.8 M sulfuric acid media, the chemiluminescence of the rhodamine B-cerium (IV) or Ce(IV) system is enhanced by DNA, activated previously by imidazole-HCl buffer solution (pH 7.0). The enhanced intensity of chemiluminescence is in proportion to log DNA concentration 1.0×10−8 to 0.1 μg ml−1 for herring sperm DNA and 2.0×10−6 to 0.2 μg ml−1 for calf thymus DNA with 3σ detection limits of 8.3×10−9 μg ml−1 for herring sperm DNA and 3.5×10−7 μg ml−1 for calf thymus DNA, respectively. The relative standard deviation for 1.0×10−4 μg ml−1 herring sperm DNA was 0.99% and 2.0×10−3 μg ml−1 for calf thymus DNA was 1.1% (n=11). Using the optimized system, DNA contents in six synthetic samples has been determined with recoveries of 99.5-109.0%. The possible mechanism has also been studied in this paper.  相似文献   

8.
In the present work, a rapid and sensitive method for simultaneous determination of penicillin G (PG), benzathine (BE) and procaine (PR) in drug and serum media is introduced. The polar hydro-organic (55/45) mobile phases containing an aqueous solution adjusted to pH = 3.7 and an organic solvent (MeOH) including triethylamine (TEA) and trifluroacetic acid (TFA) are used. The flow rate of 1 ml min−1, a C8 column (150 mm × 46 mm) with 5 μm i.d. and wavelength at 215 nm are selected for optimal separation condition. The limit of detection (LOD), linear concentration range and relative standard deviation (R.S.D.) of this method for the PG are 1.1 μg ml−1, 10-2400 μg ml−1 and 1.7% and for the BE are 1.2 μg ml−1, 12-2100 μg ml−1 and 1.8% and for the PR are 1.5 μg ml−1, 20-2000 μg ml−1 and 2%, respectively. The factorial design is used for the determination of main and interaction effects of pH, flow rate and concentration of MeOH, TEA and TFA in the separation at two levels. Also, the analysis of variance (ANOVA) table is obtained. The results show that TFA and TEA have higher effect than concentration of MeOH, pH and flow rate factors.  相似文献   

9.
A new capillary electrophoresis (CE) method for the determination of quinolizidine alkaloids in Sophora medicinal plants was developed. A total of seven alkaloid components (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) were separated within 15 min. The running buffer was a 50 mM phosphate buffer containing 1%HP-β-CD and 3.3% isopropanol. The linear calibration ranges were 5.50-88.0 μg ml−1 for cytisine and lehmannine, 5.00-88.0 μg ml−1 for sophocarpine and sophoranol, 5.60-89.6 μg ml−1 for matrine and oxysophocarpine, and 24.0-384 μg ml−1 for oxymatrine. The recoveries of the seven alkaloids were 96.0-102.9% with relative standard deviations from 1.50 to 3.00% (n = 5). The method was successfully applied to different Sophora medicinal plants including Sophora flavescens, Sophora tonkinensis and Sophora alopecuroides.  相似文献   

10.
An optical chemical sensor based on immobilization of 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in Nafion membrane is described. The membranes were cast onto glass substrates and were used for the determination of nickel in aqueous solutions by spectrophotometry. The sensor system is highly transparent, mechanically stable and showed no evidence of reagent leaching. The influence of several parameters such as pH, ligand concentration, and type and concentration of regenerating solution were optimized. The sensor system showed good sensitivity in the range 0.5-20 μg ml−1 with a detection limit of 0.3 μg ml−1 Ni(II). The sensor has been incorporated into a home-made flow-through cell for determination of nickel in flowing streams with improved sensitivity, precision and detection limit. The calibration curve in the flow system was linear in the range 0.1-16 μg ml−1 with a detection limit of 0.07 μg ml−1. The sensor is easily regenerated by dilute nitric acid solution. The proposed method was successfully applied to the determination of nickel content in vegetable oil and chocolate samples and the results were compared with those obtained using atomic absorption spectrometry.  相似文献   

11.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

12.
Chen X  Wang J 《Talanta》2006,69(3):681-685
A sensitive procedure for the quantification of total protein bovine serum albumen (BSA) in human serum was presented with sequential injection sampling and fluorometric detection. A few microliters of sample and fluorescamine solutions were aspirated into the holding coil to facilitate the reaction of protein with fluorescamine by giving rise to a blue-green-fluorescent derivative. The derivative was afterwards excited by a 400 nm radiation from a UV radiator, and the emitted fluorescence was monitored at the wavelength of 470 nm. By loading 5.0 μl of sample and 4.0 μl of fluorescamine solution 0.075% (m/v), a linear calibration graph was obtained within 0.3-12.5 μg ml−1, and a detection limit (3σ) of 0.1 μg ml−1 was achieved, along with a sampling frequency of 40 h−1 and a R.S.D. value of 2.1% at the 5.0 μg ml−1 levels. Protein contents in human serums were analyzed by using the present procedure, and reasonable agreements were obtained with those obtained by a documented spectrophotometric (Biuret) method.  相似文献   

13.
E.K. Janghel  V.K. Gupta  J.K. Rai 《Talanta》2007,72(3):1013-1016
A new simple and sensitive analytical spectrophotometric method is developed for the determination of ascorbic acid reduces methyl viologen to form a stable blue coloured free radical ion. This method has a sensitivity and lower limit detection of 0.1 μg ml−1 of ascorbic acid (0.1 ppm) which is comparable to the flow injection analysis reported earlier. Beer's law is obeyed over the concentration range of 1.0-10 μg ml−1 of ascorbic acid per 10 ml of the final solution (0.1-1.0 μg ml−1) at 600 nm. The molar absorptivity and Sandell's sensitivity were found to be 1.5 × 105 ± 100 l mol−1 cm−1 and 0.001 μg cm−2, respectively. The method has been applied to the determination of ascorbic acid in food, pharmaceuticals and biological samples.  相似文献   

14.
A simple flow injection colourimetric procedure for determining andrographolide was proposed. It is based on the reaction between andrographolide with 3,5-dinitrobenzoic acid, resulting in an intense purplish red complex with a suitable absorption at 536 nm. A standard or sample solution was injected into the 3,5-dinitrobenzoic acid stream (flow rate of 1.0 ml min−1) which was then merged with potassium hydroxide stream with the same flow rate. Optimum conditions for determining andrographolide were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 5.0-150.0 μg ml−1 and the detection limit was 1.50 μg ml−1 (3σ). The relatives standard deviation of the proposed method calculated from 10 replicate injections of 10.0 and 80.0 μg ml−1 andrographolide were 0.66% and 1.64%, respectively. The sample throughput was 50 h−1. The proposed method has been satisfactorily applied to the determination of andrographolide in herb plant samples.  相似文献   

15.
A high sensitive flow-injection chemiluminescence method for determination of calf thymus DNA and herring sperm DNA has been developed. The method is based on the chemiluminescence reaction of Rhodamine B-cerium(IV)-thermally denatured DNAs in sulfuric acid media. The proposed procedure allows quantitation of DNAs in the range 2.6×10−5 to 0.26 μg ml−1 for calf thymus DNA and 5.0×10−8 to 5.0×10−5 μg ml−1 for herring sperm DNA with correlation coefficients 0.9998 and 0.9996 (both n=11), respectively. The detection limits (3σ) are 6.5×10−6 μg ml−1 for calf thymus DNA and 4.3×10−8 μg ml−1 for herring sperm DNA. The possible mechanism of chemiluminescence in the system is discussed.  相似文献   

16.
A chemiluminescence (CL) flow system for determination of thyroxine (Thy) is presented. It is based on the catalytic effect of cobalt(II) on the CL reaction between luminol and hydrogen peroxide. The iodinated chemical structure of Thy causes a heavy atom effect. The luminol CL signals show significant quenching by Thy. The calibration graph for Thy is linear for 15-70 μg ml−1 and the 3σ detection limits are 27 μg ml−1 for d-Thy and 23 μg ml−1 for l-Thy.  相似文献   

17.
A simple chemiluminometric method using flow injection has been developed for the determination of paracetamol (acetaminophen), based on the chemiluminescence produced by the reduction of tris(2,2′-bipyridyl)ruthenium(III). The latter is obtained by oxidation of tris(2,2′-bipyridyl)ruthenium(II) by potassium permanganate in dilute sulphuric acid in the presence of paracetamol. A standard or sample solution was injected into the ruthenium(II) stream (flow rate 1.5 ml min−1) which was then merged with potassium permanganate in dilute sulphuric acid stream (flow rate 0.5 ml min−1). The chemiluminescence intensity is enhanced by the presence of manganese(II) ions. Under the optimum conditions, a linear calibration graph was obtained over the range of 0.3-50.0 μg ml−1 and the detection limit was 0.2 μg ml−1 (s/n = 3). The relative standard deviation of the proposed method calculated from 20 replicate injections of 5.0 μg ml−1 paracetamol was 1.1%. The sample throughput was 90 h−1. The method was successfully applied to the determination of paracetamol in commercial pharmaceutical formulations.  相似文献   

18.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

19.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

20.
A simple and rapid spectrophotometric method is proposed for the determination of transparent exopolymer particles (TEP) in freshwater samples. In this method, TEP reacts with excess of alcian blue solution yielding a low solubility dye-TEP complex. After centrifugation, the concentration of the remaining dye in the supernatant was determined at 602 nm and its concentration was related to the concentration of TEP in freshwater. The effect of alcian blue concentration from 1.5×10−3 to 9.0×10−3% (m/v), solution pH from 2.5 to 6.9 and stirring time from 20 to 120 s on the analytical curve was investigated. Under the optimum conditions established, such as alcian blue concentration of 3.0×10−3% (m/v); pH of 4.0 (0.2 mol l−1 acetate buffer solution) and stirring time of 1 min, the analytical curve was linear from 0.50 to 10 μg ml−1 (A=0.34−0.037[GX]; r2=0.9999; where A is the absorbance and [GX] the gum xanthan concentration in μg ml−1) with a detection limit of 0.10 μg ml−1. The recovery of TEP (as gum xanthan) for two samples ranged from 95.3 to 108 and the relative standard deviations (R.S.D.s) were lower than 0.8% for gum xanthan solutions at concentrations of 1.0 and 1.5 μg ml−1 (n=8). The results obtained for TEP in freshwater samples using the proposed spectrophotometric method and those obtained using a literature method are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号