首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
Several comparative capillary zone electrophoresis (CZE) experiments were carried out by means of uncoated, polyvinyl alcohol (PVA) and polyacrylamide (PAA) coated silica open tubular capillaries and gel-filled capillaries (linear non-cross-linked polyacrylamide, PAGE, by a pre-coated PAA capillary) using different kinds of background electrolytes (BGEs) and organic modifiers for characterization of aquatic dissolved humic matter (DHM). Organic compounds, such as acetic acid, acetate buffer, methanol, ethylene glycol, acetonitrile, dimethylsulphoxide, 5 M urea and sodium dodecyl sulphate (SDS) were tested as sample modifiers to improve the separative power. The fractionation mode by a PVA coated open tubular capillary using 40 mM phosphate buffer at pH 6.8 and 5 M urea-water as the sample modifier turned out to be fairly practical as well as its PAA homologue. Linear non-cross-linked PAGE with 10% gel concentration and 5 M urea-water as the sample modifier using 40 mM phosphate buffer at pH 6.8 produced the most reliable results as to the adaptation of physical gels, especially if the interactions of humic solutes with the gel matrix are not critical. The addition of SDS in the linear PAGE gel increased the interaction of humic solutes with the gel matrix but also improved the separative power and strengthened the chaotropic effect of the urea modifier.  相似文献   

2.
Erny GL  Calisto V  Lima DL  Esteves VI 《Talanta》2011,84(2):424-429
The strength of the interaction between a pesticide and the soil organic matter is a key parameter to assess the risk of it reaching to groundwater with potentially harmful effects to human health. In this work, a new approach that allows measuring such interactions in a few minutes using a purified fraction of the soil organic matter (humic substances) is detailed. The strength of sorption is assessed via the normalised difference of elution (retention factor, k′) between the chemical of interest and a neutral marker transported via electroosmotic flow through an open tubular column supporting the immobilised humic substances (open tubular capillary electrochromatography). The immobilisation was achieved by incubating a capillary, pre-coated with a monolayer of humic acid, with an acidic solution of humic substances. This induces the formation of a supramolecular structure of humic substances as it occurs in soils. This aggregate can easily be removed using alkaline solutions, and a new structure assembled using other humic substances (HS) or different incubations conditions. The whole procedure takes 2 h. This approach has been tested using five triazines and three types of humic substances. The order of the strength of sorption of the triazines as expected from relevant literature and the relative standard deviation of k′ was between 1 and 6%. Good repeatability was also observed after long period of wash, between re-coating and repeating of the full coating with a new capillary.  相似文献   

3.
A fast method for the generation of permanent hydrophilic capillary coatings for capillary electrophoresis (CE) is presented. Such interior coating is effected by treating the surface to be coated with a solution of glutaraldehyde as cross-linking agent followed by a solution of poly(vinyl alcohol) (PVA), which results in an immobilization of the polymer on the capillary surface. Applied for capillary zone electrophoresis (CZE) such capillaries coated with cross-linked PVA exhibit excellent separation performance of adsorptive analytes like basic proteins due to the reduction of analyte-wall interactions. The long-term stability of cross-linked PVA coatings could be proved in very long series of CZE separations. More than 1000 repetitive CE separations of basic proteins were performed with stable absolute migration times relative standard deviation (RSD > 1.2%) and without loss of separation efficiency. Cross-linked PVA coatings exhibit a suppressed electroosmotic flow and excellent stability over a wide pH range.  相似文献   

4.
Capillary zone electrophoresis (CZE) was employed for the determination of vincristine using electrochemical detection with a carbon fiber microdisk bundle electrode at a constant potential of 1.0 V versus saturated calomel electrode (SCE). The optimum conditions of separation and detection are 1.7×10−2 Na2HPO4− 3.2×10−3 mol/l NaH2PO4 (pH 7.5) for the buffer solution, 20 kV for the separation voltage. The limit of detection is 5.0×10−7 mol/l or 2.2 fmol (S/N=3) for the injection voltage of 5 kV and the injection time of 10 s. The recovery of the method is between 95 and 101% for the vincristine taken by human erythrocytes. The method was applied to investigate uptake and accumulation behavior of vincristine for human erythrocytes. The advantages of the method are the small sample volume of CZE and the high selectivity and sensitivity of electrochemical detection.  相似文献   

5.
Mikus P  Valásková I  Havránek E 《Talanta》2005,65(4):1031-1037
A capillary electrophoresis method has been developed for the separation and determination of terbinafine (TER) in various pharmaceutically relevant matrices. Capillary zone electrophoresis (CZE) separation and UV absorbance photometric detection were carried out in a 160 mm capillary tube with a 300 μm i.d., hydrodynamically (membrane) closed. The influences of pH, carrier cation and counterion on migration parameters of TER were studied and the following conditions were selected: a 20 mmol l−1 glycine running buffer adjusted to pH 2.7 with acetic acid, 0.2% (w/v) methylhydroxyethylcellulose (m-HEC) as an electro-osmotic flow (EOF) suppressor, a 250 μA driving current, and 20 °C. The optimized separation conditions were convenient for the determination of TER in commercial tablets and spray and in dialyzates. Here, the dialysis was used to investigate in vitro permeation of TER through the skin from the gel. The samples of dialyzates were examined with and without simple extraction procedure and the results were compared. A permeation profile of the drug present in the gel of given composition was obtained analyzing pretreated samples. The proposed electrophoretic method was successfully validated. It was suitable for the simple, sensitive, rapid and highly reproducible assay of TER. CZE analysis was completed within 5.5 min. The detection limit of TER was 1.73 μmol l−1 at a 224 nm detection wavelength. The intra- and inter-laboratory precisions over the concentration range 6.0-60.0 μmol l−1 were between 0.32-0.69% and 1.04-1.44% including R.S.D. of migration times and peak areas, respectively. The mean absolute recoveries of drugs from samples were found to be 98.34 (tablets) and 99.47% (spray). It is suggested that there are potentialities to determine TER present in unpretreated complex samples, as CZE in a hydrodynamically closed separation system may be easily on-line combinable with purification and preconcentration CE modes (e.g., isotachophoresis, ITP).  相似文献   

6.
《Analytica chimica acta》2004,519(1):65-71
The separation and determination of two s-triazines and two quats in water samples by MEKC was described. The influence of pH, type and concentration of buffer, concentration and type of surfactant, organic modifier and the added salt on the separation of the two neutral and the two cationic herbicides was studied. Simazine and atrazine (neutral compounds at the working pH) were little influenced by the chemical variables, while the cationic paraquat and diquat were more influenced. In the optimisation on the separation voltage, the total concentration of salt in the run buffer and the repeatability of the separation were taken into consideration. The composition of dissolution, in which the analytes were dissolved, was also studied.A solid-phase extraction method to retain and to elute the four analytes in a single step was also developed. Recoveries between 80 and 95% and R.S.D. between 6 and 10% was obtained in the analysis of a well-water sample spiked with 2 and 5 ppb of triazines and quats, respectively. Detection limits were between 0.6 and 1.9 ppb.  相似文献   

7.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

8.
Quantum dot (QD) nanoparticles (NPs) are of great interest to various researchers due to their wide range of applications, from photovoltaic sensitizers to in vivo fluorescent probes. There is a need to characterize environmental fate, degradation, and ecotoxicity of QDs because these NPs may be introduced into the environment upon disposal of waste products containing QDs following the anticipated increase in their production and use. Because the properties of QDs are defined primarily by their composition and size, it is imperative that QD size be measured accurately and quickly. Current methods for measuring the size of QDs tend to be relatively slow, require large amounts of sample and may not be suitable for environmental or biological samples. Capillary zone electrophoresis (CZE), with its inherently high separation efficiency based on the size-to-charge ratio of analytes, holds promise for efficient size determination of NPs in aqueous samples.This review examines the potential use of CZE in characterizing and separating QDs compared to the conventional methods employed in determining size distribution of NPs. We briefly discuss the advantages and the limitations of commonly used techniques for size characterization.In addition to published literature, we present results from our laboratory using CZE with laser-induced fluorescence (LIF) to examine the effect of natural organic matter and buffer composition on the electrophoretic mobility of QDs. The use of CZE in environmental studies can provide insights into the degradation and the potential impacts of QDs upon exposure to environmental and biological matrices.  相似文献   

9.
A new method for protein analysis, that is, electroosmotic pump-assisted capillary electrophoresis (EOPACE), is developed and demonstrated to possess several advantages over other CE-based techniques. The column employed in EOPACE consists of two linked sections, poly(vinyl alcohol) (PVA)-coated and uncoated capillaries. The PVA-coated capillary column is the section for protein electrophoresis in EOPACE. Electroosmotic flow (EOF) is almost completely suppressed in this hydrophilic polymer coated section, so protein electrophoresis in the PVA-modified capillary is free of irreversible protein adsorption to the capillary inner wall. The uncoated capillary section serves as an electroosmotic pump, since EOF towards cathode occurs at neutral pH in the naked silica capillary. By the separation of a protein mixture containing cytochrome c (Cyt-c), myoglobin and trypsin inhibitor, we have demonstrated the advantages of EOPACE method over other relevant ones such as pressure assisted CE, capillary zone electrophoresis (CZE) with naked capillary and CZE with PVA-coated capillary. A significant feature of EOPACE is that simultaneous separation of cationic, anionic and uncharged proteins at neutral pH can be readily accomplished by a single run, which is impossible or difficult to realize by the other CE-based methods. The high column efficiency and good reproducibility in protein analysis by EOPACE are verified and discussed. In addition, separation of tryptic digests of Cyt-c with the EOPACE system is demonstrated.  相似文献   

10.
Solvent-bar microextraction (SBME) based on two-phase (water-to-organic) extraction was for the first time used as the sample pretreatment method for the non-aqueous capillary electrophoresis (NACE) of herbicides of environmental concern. Due to the compatibility of the extractant organic solvent and the NACE separation system, the extract could be introduced directly to the CE system after SBME. Through investigations of the effect of sample pH, extraction time, agitation speed and salt addition on extraction efficiency, the most suitable extraction conditions were determined: sample solution at a pH of 1, without added salt, and stirring at 700 revolutions per minute for 30 min. SBME as applied here was also compared with single-drop microextraction and hollow fiber-protected liquid-phase microextraction. SBME showed the highest extraction efficiency. In addition, field-amplified sample injection with pre-introduced organic solvent plug removal using the electroosmotic flow as a pump (FAEP) was used to enhance the sensitivity further in NACE. Based on studies of the effect of different organic solvents, different lengths of the organic plugs and different volumes of sample injection on stacking efficiency under the most suitable separation conditions, methanol was found to be the most efficient solvent for on-line preconcentration. Combined with SBME, FAEP-NACE achieved limits of detection of between 0.08 ng/mL and 0.14 ng/mL for the studied analytes. This preconcentration approach for NACE was demonstrated to be amenable to aqueous environmental samples by applying it to spiked river water.  相似文献   

11.
Z Liu  H Zou  M Ye  J Ni  Y Zhang 《Electrophoresis》1999,20(14):2891-2897
A novel method based on the adsorption of positively charged compounds on the wall of a fused-silica capillary was applied to prepare stationary phases for open tubular capillary electrochromatography (OTCEC). The positively charged substances including cationic surfactant such as cetyltrimethylammonium bromide (CTAB) and basic chiral selectors such as protein, peptide and amino acid were physically adsorbed onto the capillary wall under specially selected conditions. The adsorbed stationary phase of CTAB was used to separate neutral compounds, while the others were used for chiral separations. The run-to-run reproducibility of retention time was rather good with relative standard deviation (RSD) values of less than 2.3%. The separation efficiency was excellent with the highest theoretical plate number of up to 590000/m and the average one above 250000/m. Stored at 2-8 degrees C in the refrigerator, the adsorbed stationary phase can last at least one month. It was observed that the UV spectra for the enantiomers are significantly different due to the diastereomeric interactions of enantiomers with the chiral stationary phase in the detection window. With the use of the same capillary, the same instrument, and the same mobile phase, the superiority of OTCEC over open tubular liquid chromatography (OTLC) and capillary zone electrophoresis (CZE) was illustrated.  相似文献   

12.
An on-line sample preconcentration method by two-step stacking i.e., sweeping and micelle to solvent stacking, in capillary zone electrophoresis (CZE) has been developed for the determination of strychnine and brucine in traditional Chinese herbal medicines. After experimental optimizations, the best separation was achieved by using 75 mM phosphate buffer (pH 2.5) with 30% methanol (v/v). Compared with normal CZE injection, 51- and 38-fold improvement in concentration sensitivity was achieved for strychnine and brucine, respectively. The calibration curve was linear in the range of 0.1–5.0 μg mL−1 for both strychnine and brucine, with the correlation coefficients of 0.9998 and 0.9997, respectively. The limits of detection (S/N = 3) for both alkaloids were 0.01 μg mL−1. The inter-day (n = 8) and intra-day (n = 5) reproducibilities expressed as the relative standard deviations for corrected peak area were less than 9.5%. The method was applied to determine strychnine and brucine in two Chinese herbal medicines, with recoveries ranging from 94.2% to 105.4%. The results indicated that the method is simple, rapid, reliable, and can be applied to determine strychnos alkaloids in traditional Chinese herbal medicines.  相似文献   

13.
In this work, for the first time, capillary zone electrophoresis (CZE) technique combined with microwave-assisted extraction (MAE) was developed for the fast quantification of chlorogenic acid (CA) in tobacco residues. CA in tobacco residue samples were extracted by MAE technique, and then analyzed by CZE. As a new sample preparation method for tobacco residues, the MAE procedure is optimized, validated and compared with conventional methods including ultrasonic extraction (USE) and reflux extraction (RE). It is found that MAE gives the best result due to the highest extraction efficiency within shortest extraction time (only 4.0 min). Here, CA is determined by CZE based on the calibration curve of its authentic standard. The method linearity, detection limit, precision and recovery are studied. The results show that the combined MAE and CZE method has a linearity (R2 0.991, 0.003-0.5 mg ml−1), a limit of detection (0.003 mg ml−1), a limit of quantification (0.01 mg ml−1), good precision (R.S.D. = 4.28%) and a finer recovery (89.0%). The proposed method was successfully applied to the analysis of CA in tobacco residue samples. The experiment results have demonstrated that the CZE combined with MAE is a convenient, fast, economical and reliable method for the determination of CA in tobacco residues.  相似文献   

14.
Yanqing Wang  Changgang Huang  Li He 《Talanta》2009,77(5):1667-1674
This paper describes the enhanced separation of lomefloxacin, sparfloxacin, fleroxacin, norfloxacin, ofloxacin, gatifloxacin and pazufloxacin by capillary zone electrophoresis (CZE) using silica nanoparticles (SiNPs) as running buffer additive. The impact of SiNPs concentration on the resolution and selectivity of separation was investigated and a given value of SiNPs was finally chosen under the optimum conditions. The addition of the SiNPs to the running buffer enabled electroosmotic flow (EOF) decrease and permitted full interaction between SiNPs and analytes. The influence of separation voltage, pH and buffer concentration on the separation in the presence of SiNPs was examined. Interactions between drugs and nanoparticles during the separation are discussed; the determination of interaction constants is also achieved. A good resolution of seven quinolones was obtained within 15 min in a 50 cm effective length fused-silica capillary at a separation voltage of +10 kV in a 12 mM disodium tetraborate-phosphate buffer (pH 9.08) containing 5.2 μg mL−1 SiNPs.  相似文献   

15.
The separation and identification of aromatic acids in soil and the Everglades sediment samples was carried out using solid-phase microextraction (SPME) followed by capillary zone electrophoresis (CZE). The soil and sediment samples were subject to a series of sample treatments including oxidative hydrolysis with molecular oxygen in a sodium hydroxide solution, acidification and filtration. The aromatic acids in the sample filtrate were extracted using SPME with a polyacrylate-coated fiber. The acids adsorbed on the fiber were subsequently desorbed in methanol. The desorbed acids were then separated by CZE. Several aromatic acids (e.g.. salicylic acid, p-coumaric acid, ferulic acid and vanillic acid) in both soil and sediment samples were separated, identified and quantified. The results of this study show that the combination of SPME with CZE is promising for environmental analysis.  相似文献   

16.
Zhong S  Tan SN  Ge L  Wang W  Chen J 《Talanta》2011,85(1):488-492
As a first attempt, cloud point extraction (CPE) was developed to preconcentrate bisphenol A (BPA), α-naphthol and β-naphthol prior to performing capillary zone electrophoresis (CZE) analysis. The parameters influencing the CPE efficiency, such as Triton X-114 concentrations, pH value, extraction time and temperature were systematically evaluated.After diluting with acetonitrile, the surfactant-rich phase of CPE can be injected directly into the CE instrument. The CZE baseline separation was achieved with running buffer (pH 9.5) composed of 50 mM sodium tetraborate in 30% (v/v) methanol, and an applied voltage of 25 kV. Under the optimized CPE and CZE conditions, an preconcentration factor of 50 times could be obtained and the limit of quantification for the three analytes were found to be 1.67 μg L−1, 0.80 μg L−1 and 0.67 μg L−1 for BPA, α-naphthol and β-naphthol, respectively. The proposed methods have shown to be a green, rapid and effective approach for determination of three analytes present in river water samples.  相似文献   

17.
A new capillary zone electrophoresis (CZE) method for the separation of omeprazole enantiomers has been developed. Methyl-β-cyclodextrin (methyl-β-CD) was chosen as the chiral selector, and several parameters, such as cyclodextrin structure and concentration, buffer concentration, pH, and capillary temperature were investigated in order to optimize separation and run times. Analysis times, shorter than 8 min were found using a background electrolyte solution consisting of 40 mM phosphate buffer adjusted to pH 2.2, 30 mM β-cyclodextrin and 5 mM sodium disulphide, hydrodynamic injection, and 15 kV separation voltage. Detection limits were evaluated on the basis of baseline noise and were established 0.31 mg/l for the omeprazole enantiomers. The proposed method was applied to five pharmaceutical preparations with recoveries between 84 and 104% of the labeled contents.  相似文献   

18.
A fast capillary zone electrophoresis (CZE) method has been developed for the determination of four flavonoids (liquiritin, licoisoflavone A, licochalconel A and calycosin) in Glycyrrhizae radix. After a series of optimization experiments, 100 mM borate buffer (pH 10.5), 30 kV applied voltage and 35 °C temperature were selected. The contents of four flavonoids in cultivated and wild crude drugs of Glycyrrhizae radix with different growth periods from one to four years, collected from different areas were successfully determined within 8 min, with satisfactory repeatability and recovery.  相似文献   

19.
A method for determination of nine brominated phenols as environmental risk compounds was developed by on-line coupled capillary isotachophoresis and capillary zone electrophoresis (ITP–CZE). For ITP step, 1 × 10−2 mol L−1 hydrochloric acid with 3 × 10−2 mol L−1 ammediol pH 9.1 was used as the leading electrolyte, and 3 × 10−2 mol L−1 β-alanine with 2 × 10−2 mol L−1 sodium hydroxide pH 10.05 was used as the terminating electrolyte. As the background electrolyte for CZE separation, 2.5 × 10−2 mol L−1 β-alanine with 2.5 × 10−2 mol L−1 lysine pH 9.6 was used. All electrolytes contained 0.05% or 0.1% (m/v) hydroxyethylcellulose to suppress the electroosmotic flow. UV detection at wavelength 220 nm was used. Detection limits in order of tens of nmol L−1 were achieved. Good repeatability of migration times (less than 0.33% RSD) and good repeatability of peak areas (less than 7.19% RSD) at concentration level 5 × 10−8 mol L−1 were observed. Developed ITP–CZE method was applied to determination of brominated phenols in spiked tap and river water samples.  相似文献   

20.
Several metal-binding proteins, including albumin, carbonic anhydrase, conalbumin, cytochrome c, ferritin, hemoglobin, myoglobin, plasma amine oxidase, superoxide dismutase and transferrin were separated with capillary zone electrophoresis (CZE) in uncoated and coated capillaries. Phosphate and tetraborate buffers achieved complementary separation selectivities. Optimised pre-wash protocols for uncoated capillaries using 0.1 M HCl as a rinsing solution for the borate buffer and a combination of 0.1 M NaOH and 0.1 M HCl for the phosphate system improved the stability of migration times considerably with coefficients of variation between 0.10 and 0.77% (n=7) instead of up to 2.92% with inappropriate rinsing conditions. Capillaries coated with poly(vinyl alcohol) and equipped with a 150 μm i.d. bubble cell increased the signal-to-noise ratio by a factor three, additionally improving the resolution. For commercial protein standards, which gave several peaks in CZE with UV detection, MS data proved the presence of proteinaceous contaminants. Molecular weights (Mr) of proteins experimentally determined from MS data showed deviations from theoretical Mr as small as 0.002-0.021%. Applicability of the developed separation for clinical samples is shown for human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号