首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The present work reports the first spectrofluorimetric gas-diffusion flow injection (GD-FI) assay for the determination of chlorine dioxide in water samples (tap, mineral and soda water). The method is based on the fluorescence quenching of chromotropic acid (CA) (λex. = 347 nm, λem. = 371 nm) caused by the analyte. The chemical and instrumental variables of the system were studied in terms of maximum sensitivity. The gas-diffusion cell was thermostated at 40 °C to enhance the vaporization of chlorine dioxide and thus the sensitivity of the method. The quenching effect of chlorine dioxide on CA was linear in the range 0.09-3.41 mg l− 1, while the precisions either close to the quantitation limit or near to the middle of the linear section of the calibration graph were satisfactory in both cases (sr = 2.6% and 1.5% (n = 10) at 0.17 and 1.71 mg l− 1 level, respectively). The developed method proved to be adequately selective and sensitive with 3σ limit of detection equal to cL = 0.03 mg l− 1. The application of the assay to spiked tap, mineral and soda water samples yielded accurate results with recovery values in the range 94.1-105.9%.  相似文献   

2.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

3.
Fotini S. Kika 《Talanta》2007,71(3):1405-1410
The present work reports the first sequential injection (SI) method for the spectrophotometric determination of Ti(IV). The method is based upon the reaction of Ti(IV) with chromotropic acid (CA) in acidic medium to form a water-soluble complex (λmax = 420 nm). The chemical and instrumental variables of the system that affected the reaction were studied. Selectivity was greatly enhanced using ascorbic acid. A linear calibration graph was obtained in the range 0.2-10.0 mg l−1 Ti(IV) at a sampling frequency of 24 h−1. The precision was satisfactory (sr = 1.5% at 5.0 mg l−1 Ti(IV), n = 12) and the 3σ limit of detection, cL, was 0.7 mg l−1 (n = 10). The developed method proved to be adequately selective and was applied successfully to the analysis of real samples (dental implant and natural Moroccan phosphate rock) giving accurate results based on recovery studies (98-105%).  相似文献   

4.
Bortoleto GG  Cadore S 《Talanta》2005,67(1):169-174
A rapid and sensitive method for the on-line separation and pre-concentration of inorganic arsenic in water samples is described. The analyte in the pentavalent oxidation state is reduced to its trivalent form with l-cysteine and the total inorganic arsenic is sorbed onto activated alumina in the acid form in a mini-column coupled to a FI-HG AAS system. Afterwards, it is eluted with 3 mol l−1 HCl. An enrichment factor of 7 was obtained, allowing an analytical flow rate of about 28 determinations per hour. The limits of detection (3σ) and of quantification (10σ) were calculated as LOD = 0.15 μg l−1 of As and LOQ = 0.5 μg l−1 of As, respectively. Relative standard deviations (n = 10) less than 8% were obtained for different arsenic concentrations and the accuracy was verified by analysing certified reference materials. Different kinds of samples, such as mineral water, drinking water, river water and natural spring water were analyzed and good agreement was obtained with the values from spiked experiments.  相似文献   

5.
Sakai T  Piao S  Teshima N  Kuroishi T  Grudpan K 《Talanta》2004,63(4):893-898
Flow injection spectrofluorimetry with in-line Winklers procedure was developed for the dissolved oxygen (DO) determination. 2-Thionaphthol reacted with iodine produced by Winkler’s method to form fluorescence inactive disulfide compound. To automate the process completely, a 5-channel flow system with a newly designed 16-way valve was assembled. The system consisted of a dispersion coil (DC), a precipitate formation coil (PFC), a precipitate dissolving coil (PDC), and extraction coil (EC). A calibration can be constructed by using a standard iodine solution for dissolved oxygen. The calibration graph was linear over the range 1.2×10−4∼6.0×10−4 mol l−1 iodine (1.96∼9.80 mg O l−1)). The relative standard deviation (n=6) was below 0.3% for the 4×10−4 mol l−1 iodine (6.27 mg O l−1) determination. The sample throughput was 12/h.  相似文献   

6.
A highly sensitive flow-injection (FI) method with chemiluminescence (CL) detection is used for the determination of l-ascorbic acid. The method is based on the CL reaction of Rhodamine B with cerium(IV) in sulfuric acid media. l-Ascorbic acid is suggested to be a catalyst utilized in the energy-transferred excitation process. The proposed procedure allows quantitation of l-ascorbic acid in the range 3.8×10−13 to 1.0×10−10 mol l−1 with a correlation coefficient of 0.9998 (n=5) and relative standard deviation (R.S.D.) of 0.92% (n=11) at 1.0×10−11 mol l−1. The detection limit (3×blank) was 1.0×10−13 mol l−1. The method is successfully used to determine l-ascorbic acid in fresh vegetables. The possible mechanism of the chemiluminescence in the system is discussed.  相似文献   

7.
A multicommuted flow system is proposed for spectrophotometric determination of hydrosoluble vitamins (ascorbic acid, thiamine, riboflavine and pyridoxine) in pharmaceutical preparations. The flow manifold was designed with computer-controlled three-way solenoid valves for independent handling of sample and reagent solutions and a multi-channel spectrophotometer was employed for signal measurements. Periodic re-calibration as well as the standard addition method was implemented by using a single reference solution. Linear responses (r=0.999) were obtained for 0.500-10.0 mg l−1 ascorbic acid, 2.00-50.0 mg l−1 thiamine, 5.00-50.0 mg l−1 riboflavine and 0.500-8.00 mg l−1 pyridoxine. Detection limits were estimated as 0.08 mg l−1 (0.5 μmol l−1) ascorbic acid, 0.8 mg l−1 (2 μmol l−1) thiamine, 0.2 mg l−1 (0.5 μmol l−1) riboflavine and 0.1 mg l−1 (0.9 μmol l−1) pyridoxine at 99.7% confidence level. A mean sampling rate of 60 determinations per hour was achieved and coefficients of variation of 1% (n=20) were estimated for all species. The mean reagent consumption was 25-fold lower in relation to flow-based procedures with continuous reagent addition. Average recoveries between 95.6 and 100% were obtained for commercial pharmaceutical preparations. Results agreed with those obtained by reference methods at 95% confidence level. The flow system is suitable for application in quality control processes and in dissolution studies of vitamin tablets.  相似文献   

8.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

9.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

10.
A gas diffusion-flow injection system was developed for the determination of carbon dioxide in gaseous samples. The calibration was based on the use of either gaseous carbon dioxide or aqueous sodium carbonate standards. Gaseous carbon dioxide samples and gaseous or aqueous standards were injected directly into a donor stream of 1.0×10−4 M H2SO4. In the gas diffusion unit, carbon dioxide diffused through a PTFE membrane into an acceptor stream containing a mixed acid/base indicator. The absorbance of the acceptor stream was monitored spectrophotometrically at 554 nm. The calibration plot was linear over the range of 5.00×102 to 1.27×104 μl l−1 with a sample throughput of 28 h−1 and 3.2% R.S.D. ([CO2]=2.37×103 μl l−1, n=12). The detection limit was determined as 2.50×102 μl l−1. The flow system was successfully applied to the analysis of several natural gaseous samples and the headspace of milk containers during storage. The flow injection results were found to be statistically indistinguishable at the 95% confidence level from those obtained by gas chromatography using thermal conductivity detection.  相似文献   

11.
A novel chemiluminescence gas-diffusion flow injection system for the determination of arsenic(III) in aqueous samples is described. The analytical procedure involves injection of arsenic(III) samples and standards into a 0.3 mol L−1 hydrochloric acid carrier stream which is merged with a reagent stream containing 0.2% (w/v) sodium borohydride and 0.015 mol L−1 sodium hydroxide. Arsine, generated in the combined carrier/reagent donor stream, diffuses across the hydrophobic Teflon membrane of the gas-diffusion cell into an argon acceptor stream and then reacts with ozone in the flow-through chemiluminescence measuring cell of the flow system. Under optimal conditions, the method is characterized by a wide linear calibration range from 0.6 μg L−1 to 25 mg L−1, a detection limit of 0.6 μg L−1 and a sample throughput of 300 samples per hour at 25 mg L−1 and 450 samples per hour at 25 μg L−1.  相似文献   

12.
Monser L  Adhoum N  Sadok S 《Talanta》2004,62(2):389-394
A novel gas diffusion-flow injection method has been developed for the rapid and sensitive determination of total inorganic carbon (TIC) in water. The method is based on the diffusion of CO2 across gas permeable membrane from a donor stream containing 0.1 M HCl to an acceptor stream of sodium acetate (10−5 mol l−1 and pH 10). The CO2 trapped in the acceptor stream passes through an electrochemical flow cell contains a tungsten oxide wire and a silver/silver chloride electrode, where it was sensitively detected. The parameters affecting the sensitivity of the electrode such as buffer concentration, pH, flow rate and injected volume were studied in detail. The electrode response was linear in the concentration range from 5 to 100 μg ml−1 CO32− with a correlation coefficient (R2) of 0.998. Precision (R.S.D.) was 1.42% for 20 μg ml−1 standard solution of CO32− (n=10). The detection limit was 0.20 μg ml−1 CO32−. The method was evaluated by the injection of real natural water samples and an average recovery of 100.1% was obtained. The sampling rate was 30 samples h−1. The method is simple, feasible with satisfactory accuracy and precision and thus could be used for monitoring TIC in water.  相似文献   

13.
A new, simple and sensitive spectrofluorimetric method for the determination of salicylic acid (λex = 315 nm, λem = 408 nm) using As(III) as a sensitizing reagent has been investigated by measuring the increase of fluorescence intensity of salicylic acid due to the complexation of As(III)-salicylic acid in presence of sodium dodecyl sulfate (SDS) 10−3 M. Under optimum conditions, a significant relationship was obtained between the fluorescence intensity and salicylic acid concentration. A linear calibration curve was obtained in the range 13.8-13812 μg l−1 with product-moment correlation coefficient (R) 0.99985 and detection limit 4.2 μg l−1. The R.S.D. is 2.35% (n = 5).The method was applied successfully to the determination of salicylic acid in human serum.  相似文献   

14.
1H NMR spectroscopy was applied to the quantitative determination of malic and citric acids in apple, apricot, pear, kiwi, orange, strawberry and pineapple juices. Aspartic acid was studied as a potential interference. The effect of the sample pH on the chemical shifts of signals from malic, citric and aspartic acids was examined and a value of 1.0 was selected to carry out the determination. Integration of NMR signals at 2.89-2.95 and 3.00-3.04 ppm were used for calculating the concentration of malic and citric acids, respectively. At this pH the integrated signals were not overlapped. Sodium 3-(trimethylsilyl)tetradeuteropropionate (TSP) was used as an internal reference. The obtained results applying NMR procedures to analyze the juices from different fruits were compared to those obtained using enzymatic methods and both were in close agreement. The intra- and inter-day repeatability was tested for apple juice (7.86 g l−1 malic acid, 0.32 g l−1 citric acid) and apricot juice (5.06 g l−1 malic acid, 4.79 g l−1 citric acid) obtaining coefficients of variation lower than 3.4% for intra-day measures (n = 10) and lower than 3.8% for inter-day measures (n = 20).  相似文献   

15.
A new method is proposed for the chemiluminescent determination of the pesticide 3-indolyl acetic acid by means of an flow injection analysis system. The chemiluminescence emission is obtained by oxidation of the analyte with Ce (IV) in nitric acid and presence of β-cyclodextrine.The continuous-flow method allows the determination of 159 samples h−1 of 3-indolyl acetic acid in an interval of concentrations over the range 0.5-15.0 mg l−1. The limit of detection was 0.1 μg l−1 and the R.S.D. (n, 17) at 2.0 mg l−1 of the pesticide level was 2.7%. The method was applied to water samples.  相似文献   

16.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

17.
A flow-injection chemiluminescence (CL) method is described for the determination of fluoroquinolones including ciprofloxacin, norfloxacin and ofloxacin. The method is based on the enhancement by these compounds of the weak CL from peroxynitrous acid. The linear ranges are 1.0×10−7 to 1.0×10−5 mol l−1 for ciprofloxacin and norfloxacin, and 3.0×10−7 to 3.0×10−5 mol l−1 for ofloxacin, respectively. The detection limits (S/N=3) are 4.5×10−8 mol l−1 ciprofloxacin, 5.9×10−8 mol l−1 norfloxacin and 1.1×10−7 mol l−1 ofloxacin, respectively. The proposed method was applied to the determination of fluoroquinolones in pharmaceutical preparations.  相似文献   

18.
It has been developed a fully mechanized procedure for the spectrophotometric determination of anionic surfactants in water expressed in terms of SDS concentration. The reference method, based on the reaction of SDS with methylene blue (MB) followed by extraction in chloroform, was mechanized in order to reduce the consumption of organic solvents. The system was based on the multicommutation approach and provided a 35 times reduction of the waste production without sacrificing the figures of merit of the method in terms of sensitivity and repeatability, for a dynamic linear range from 0.2 to 1.7 mg l−1. Results obtained for washing water samples were comparable with those obtained using the reference method and no significant differences, at 95% confidence level, were observed. Other useful characteristics are a solvent consumption of 0.7 ml per determination, a sampling throughput of 40 determinations per hour, a relative standard deviation of 5.9% (n = 10) for a sample containing 2 × 10−6 mol l−1 (576 μg l−1) surfactant and a limit of detection of 6.1 × 10−9 mol l−1 (1.7 μg l−1).  相似文献   

19.
Wang CY  Hu XY 《Talanta》2005,67(3):625-633
Benorilate was determined by the differential pulse voltammetry (DPV) using a carbon paste electrode modified by silver nanoparticles in 1.25 × 10−3 mol l−1 KH2PO4 and Na2HPO4 buffer solution (pH = 6.88, 25 °C) .The anodic peak potential was +0.970 V (versus SCE). A good linear relationship was realized between the anodic peak currents and benorilate concentrations in the range of 1.0 × 10−7 to 2.5 × 10−4 mol l−1 with the detection limit of 1.0 × 10−8 mol l−1. The recovery was 95.2-103.6% with the relative standard deviation of 3.6% (n = 9). The pharmaceutical preparations, benorilate tablets samples and its metabolite (salicylic acid) in urine were determined with the desirable results.  相似文献   

20.
This paper describes a simple and highly selective method for the separation, preconcentration and spectrophotometric determination of extremely low concentration of mercury. The method is based on the flotation of an ion-associate of HgI42− and ferroin between aqueous and n-heptane interface at pH 5. The ion-associate was then separated and treated with ammonia and dithizone solutions to extract only the mercury chelate with CH2Cl2. The measurement is feasible when the volume of the water sample containing Hg(II) was varied over 50-800 ml. Beer's law was obeyed over the concentration range of 8 × 10−9 to 1.6 × 10−7 mol l−1 with an apparent molar absorptivity of 6.53 × 106 l mol−1 cm−1 for a 500 ml aliquot of the water sample. The detection limit (n = 7) was 5.0 × 10−10 mol l−1 and the R.S.D. (n = 5) for 8.0 × 10−7 mol l−1 of Hg(II) was 3.7%. A notable advantage of the method is that the determination of Hg(II) is free from the interference of almost all cations and anions found in the environmental and waste water samples. The determination of Hg(II) in tap, synthetic sea water and human hair samples was carried out by the present method and cold vapor atomic absorption spectrometry (CV-AAS). The results were satisfactorily comparable so that the applicability of the proposed method was confirmed to the real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号