首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flores JR  Nevado JJ  Peñalvo GC  Diez NM 《Talanta》2005,65(1):163-171
A simple, rapid and sensitive procedure using nonaqueous capillary electrophoresis (NACE) to measure fluoxetine and its main metabolite norfluoxetine has been developed and validated. Optimum separation of fluoxetine and norfluoxetine, by measuring at 230 nm, was obtained on a 60 cm × 75 μm capillary using a nonaqueous solution system of 7:3 methanol-acetonitrile containing 15 mM ammonium acetate, capillary temperature and voltage 25 °C and 25 kV, respectively and hydrodynamic injection. Paroxetine was used as internal standard. Good results were obtained for different aspects including stability of the solutions, linearity, and precision. Detection limits of 10 μg L−1 were obtained for fluoxetine and its metabolite. This method has been used to determine fluoxetine and it main metabolite at clinically relevant levels in human urine. Before NACE determination, the samples were purified and enriched by means of extraction-preconcentration step with a preconditioned C18 cartridge and eluting the compounds with methanol.  相似文献   

2.
A simple, specific and sensitive high-performance liquid chromatography — electrospray tandem mass spectrometry method is developed for the simultaneous determination of fluoxetine and its metabolite norfluoxetine in human plasma. Plasma samples were simply treated with acetonitrile to precipitate and remove proteins and the isolated supernatants were directly injected into the high-performance liquid chromatography — electrospray tandem mass spectrometry system. Chromatographic separation of the analytes was achieved on a Discovery C18 (100 × 2.1 mm I.D., particle size 3.0 μm) column using 0.1% formic acid in water — acetonitrile (40: 60) as mobile phase with a flow rate of 0.2 mL/min. Diazepam was used as the internal standard. The compounds were ionized in the electrospray ionization source of the mass spectrometer and were detected by selected reaction ion monitoring of the transitions of m/z 310 → m/z 44.3 for fluoxetine, m/z 296 → m/z 134 for norfluoxetine and m/z 285 → m/z 193 for the internal standard. The method has low limit of detection (LOD) of 0.02 ng/mL and 0.03 ng/mL for fluoxetine and norfluoxetine, respectively. The inter- and intra-run precision was measured to be below 5.3% (relative standard deviation) for both fluoxetine and norfluoxetine. The developed method was successfully used to investigate plasma concentrations of fluoxetine and norfluoxetine in the pharmacokinetic study of Chinese volunteers who received fluoxetine orally.  相似文献   

3.
A sensitive, selective, and reproducible in-tube polypyrrole-coated capillary (PPY) solid-phase microextraction and liquid chromatographic method for fluoxetine and norfluoxetine enantiomers analysis in plasma samples has been developed, validated, and further applied to the analysis of plasma samples from elderly patients undergoing therapy with antidepressants. Important factors in the optimization of in-tube SPME efficiency are discussed, including the sample draw/eject volume, draw/eject cycle number, draw/eject flow-rate, sample pH, and influence of plasma proteins. Separation of the analytes was achieved with a Chiralcel OD-R column and a mobile phase consisting of potassium hexafluorophosphate 7.5 mM and sodium phosphate 0.25 M solution, pH 3.0, and acetonitrile (75:25, v/v) in the isocratic mode, at a flow rate of 1.0 mL/min. Detection was carried out by fluorescence absorbance at Ex/Em 230/290 nm. The multifunctional porous surface structure of the PPY-coated film provided high precision and accuracy for enantiomers. Compared with other commercial capillaries, PPY-coated capillary showed better extraction efficiency for all the analytes. The quantification limits of the proposed method were 10 ng/mL for R- and S-fluoxetine, and 15 ng/mL for R- and S-norfluoxetine, with a coefficient of variation lower than 13%. The response of the method for enantiomers is linear over a dynamic range, from the limit of quantification to 700 ng/mL, with correlation coefficients higher than 0.9940. The in-tube SPME/LC method can therefore be successfully used to analyze plasma samples from ageing patients undergoing therapy with fluoxetine.  相似文献   

4.
A sensitive method for the simultaneous determination of fluoxetine and its major active metabolite norfluoxetine in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. The samples were extracted from alkalised plasma with hexane-isoamyl alcohol (98:2, v/v) followed by back-extraction into formic acid (2%). Chromatography was performed on a Phenomenex Luna C18 (2) 5 microm, 150x2 mm column with a mobile phase consisting of acetonitrile-0.02% formic acid (340:660, v/v) at a flow-rate of 0.35 ml/min. Detection was achieved by a Perkin-Elmer Sciex API 2000 mass spectrometer (LC-MS-MS) set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recoveries for fluoxetine and norfluoxetine were 98 and 97%, respectively, with a lower limit of quantification set at 0.15 ng/ml for the analyte and its metabolite. This assay method makes use of the increased sensitivity and selectivity of mass spectrometric (MS-MS) detection to allow for a more rapid (extraction and chromatography) and sensitive method for the simultaneous determination of fluoxetine and norfluoxetine in human plasma than has previously been described.  相似文献   

5.
A capillary electrophoresis method was optimized for the stereoselective analysis of the antidepressant drug fluoxetine and its main demethylated metabolite norfluoxetine using a cyclodextrin-modified sodium phosphate buffer at pH 2.5. The combination of a neutral and a negatively charged cyclodextrin, dimethylated-beta- and phosphated-gamma-respectively, provided the baseline enantiomeric separation of the two compounds. The very low concentrations of chiral selectors employed together with the use of a high sensitivity detection cell of special design (zeta-shaped) in a diode array UV detector allowed us to reach a limit of detection of 0.005 and 0.01 microg/mL for fluoxetine and norfluoxetine, respectively. Analysis of fluoxetine and norfluoxetine standard mixtures showed a reproducibility of migration times and peak area and linearity in the concentration range of 0.1-2.0 microg/mL. The optimized method was applied to the analysis of clinical serum and plasma samples of patients under depression therapy. In all the analyzed samples the enantiomeric forms of fluoxetine and norfluoxetine were easily identified. The fluoxetine and metabolite enantiomeric ratio confirmed the stereoselectivity of the metabolic process of the fluoxetine drug in accordance with the literature data.  相似文献   

6.
Wei Li 《Talanta》2007,71(1):385-390
A novel high-performance liquid chromatographic (HPLC) method using pre-column derivatization and UV detection at 275 nm for the determination of clarithromycin in rat plasma has been validated. Clarithromycin was extracted from plasma sample spiked with internal standard (erythromycin) under alkaline condition with ethyl ether and derivatizated with trimethylbromosilane. The analyses were run on a C18 column, maintained at 40 °C during elution, using a mobile phase comprised of potassium dihydrogen phosphate (50 mM, pH 6.8, contained 0.7% triethylamine), acetonitrile, and methanol (30:45:25, v/v/v). The standard calibration curve for clarithromycin was linear (r2 = 0.9998) over the concentration range of 0.1-10 μg ml−1 in rat plasma. The limit of detection (LOD) and limit of quantitation (LOQ) was 30 ng ml−1 and 0.1 μg ml−1 respectively. The intra- and inter-day assay variability range was 2.6-7.4% and 3.3-8.5%, respectively. This method has been successfully applied to a pharmacokinetic study of clarithromycin in rats.  相似文献   

7.
A rapid, sensitive and selective bioanalytical method was developed for the simultaneous determination of fluoxetine and its primary metabolite norfluoxetine in human plasma. Sample preparation was based on supported liquid extraction (SLE) using methyl tert‐butyl ether to extract the analytes from human plasma. Chromatography was performed on a Synergi 4 μ polar‐RP column using a fast gradient. The ionization was optimized using ESI (+) and selectivity was achieved by tandem mass spectrometric analysis using MRM functions, m/z 310 → 44 for fluoxetine, m/z 296 → 134 for norfluoxetine and m/z 315 → 44 for fluoxetine‐d5 (internal standard). The method is linear over the range of 0.05–20 ng/mL (using a human plasma sample volume of 0.1 mL) with a coefficient determination of greater than 0.999. The method is accurate and precise with intra‐batch and inter‐batch accuracy (%bias) of <±15% and precision (%CV) of <15% for both analytes. A run time of 4 min means a high throughput of samples can be achieved. To our knowledge, this method appears to be the most sensitive one reported so far for the quantitation of fluoxetine and norfluoxetine and can be used for routine therapeutic drug monitoring or pharmacokinetic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
An enantioselective method for the determination of fluoxetine (a selective serotonin reuptake inhibitor) and its pharmacologically active metabolite norfluoxetine has been developed for raw and treated wastewater samples. The stable isotope-labeled fluoxetine and norfluoxetine were used in an extended way for extraction recovery calculations at trace level concentrations in wastewater. Wastewater samples were enriched by solid phase extraction (SPE) with Evolute CX-50 extraction cartridges. The obtained extraction recoveries ranged between 65 and 82% in raw and treated wastewater at a trace level concentration of 50 pM (15-16 ng L−1). The target compounds were identified by the use of chiral liquid chromatography tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring (SRM) mode. The enantiomers were successfully resolved on a chiral α1-acid glycoprotein column (chiral AGP) with acetonitrile and 10 mM ammonium acetate buffer at pH 4.4 (3/97, v/v) as the mobile phase. The effects of pH, amount of organic modifier and buffer concentration in the mobile phase were investigated on the enantiomeric resolution (Rs) of the target compounds. Enantiomeric Rs-values above 2.0 (1.03 RSD%, n = 3) were achieved for the enantiomers of fluoxetine and norfluoxetine in all mobile phases investigated. The method was validated by assessing parameters such as cross-contamination and carryover during SPE and during LC analysis. Cross-talk effects were examined during the detection of the analytes in SRM mode. In addition, the isotopic purity of fluoxetine-d5 and norfluoxetine-d5 were assessed to exclude the possibility of self-contamination. The interassay precision of the chromatographic separation was excellent, with relative standard deviations (RSD) equal to or lower than 0.56 and 0.81% in raw and treated wastewaters, respectively. The method detection and quantification limits (respectively, MDL and MQL) were determined by the use of fluoxetine-d5 and norfluoxetine-d5. The MQL for the single enantiomers ranged from 12 to 14 pM (3.6-4.3 ng L−1) in raw wastewater and from 3 to 4 pM (0.9-1 ng L−1) in treated wastewater. The developed method has been employed for the quantification of (R)-fluoxetine, (S)-fluoxetine and the enantiomers of norfluoxetine in raw and treated wastewater samples to be presented in Part II of this study.  相似文献   

9.
Two polar benzo[c]phenanthridine alkaloids, chelerythrine (CHE) and dihydrochelerythrine (DHCHE), were extracted at 35 °C and 10 MPa (15 MPa for real samples) from real and spiked plasma samples with acceptable recoveries (95.1% and 81.0%, respectively) using near-critical CO2 modified with aqueous (1:1, v/v) methanol. The alkaloids were quantified by a liquid chromatographic/electrospray mass spectrometric (LC/ESI-MS) method on a Zorbax SB-CN column (75 mm × 4.6 mm, 3.5 μm particle size) using methanol (organic phase) and 50 mM ammonium formiate (aqueous phase) as a mobile phase. A linear gradient 0-1 min, isocratic at 60% organic phase (v/v); from 1.0 to 7.0 min, 60-71% organic phase (v/v); from 7.0 to 18.0 min, 71-60% organic phase (v/v) was applied. The limit of detection was 1.22 ng (3.50 pmol) for CHE and 0.95 ng (2.72 pmol) for DHCHE per 1 ml of the sample. The linearity of the calibration curves was satisfactory as indicated by coefficients of determination 0.9979 and 0.9995 for CHE and DHCHE, respectively. Repeatability and intermediate precision (average R.S.D.s) were 1.0-1.5%, accuracy was in the range 99.7-100.3%. Average recovery was 100.1% for both, standard solutions and spiked plasma extracts. Three samples of real rat plasma were extracted and analysed to test the method.  相似文献   

10.
A high-performance liquid chromatographic method was developed for the analysis of the appetite suppressant mazindol and its metabolite 2-(2-aminoethyl)-3-(p-chlorophenyl)-3-hydroxyphthalimidine (Met) in mouse brain and plasma. The two compounds were quantified by measuring Met after two different sample pretreatments. For mazindol determination, the treatment involved the hydrolysis of mazindol to Met, by incubating the sample at 80 °C for 15 min at pH 10.6 followed by liquid-liquid extraction procedure while for the determination of Met, the hydrolysis step was omitted. The obtained Met was analyzed by HPLC after its derivatization with the fluorescent reagent 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl). The separation was performed on an ODS column with mobile phase consisted of a mixture of acetonitrile-methanol-0.1 M acetic acid (46:4:50, v/v/v) containing tetrahydrofuran (6%). The effluent was monitored at excitation and emission wavelengths of 330 and 445 nm, respectively. Calibration curves of mazindol and Met ranged from 0.1 to 25 ng/ml and from 0.5 to 250 ng/g in spiked mouse plasma and brain tissue, respectively. The method is highly sensitive with the limits of detection for Met on column of 2.8 and 3.5 fmol in plasma and brain, respectively, at a signal-to-noise ratio of 3. The intra- and inter-day precisions were less than 4.5 and 9.7%, in plasma and less than 8.8 and 7.2% in brain, respectively. The developed method was applied for the monitoring of mazindol and Met levels in mouse plasma and brain tissue regions after single intraperitoneal administration of mazindol, 0.5 mg/kg.  相似文献   

11.
We developed a method for simultaneously determining naltrexone, an opioid antagonist, and its major metabolite (6-β-naltrexol) in plasma using LC/MS/MS. Three compounds, and naloxone as an internal standard, were extracted from plasma using a mixture of methyl-tertiary-butyl ether. After drying the organic layer, the residue was reconstituted in a mobile phase (0.1% formic acid-acetonitrile:0.1% formic acid buffer, 95:5, v/v) and injected onto a reversed-phase C18 column. The isocratic mobile phase was eluted at 0.2 ml/min. The ion transitions monitored in multiple reaction-monitoring modes were m/z 342 → 324, 344 → 326, and 328 → 310 for naltrexone, 6-β-naltrexol, and naloxone, respectively. The coefficient of variation of the assay precision was less than 11.520%, and the accuracy exceeded 93.465%. The limit of quantification was 2 ng/ml for naltrexone and 7.2 ng/ml for 6-β-naltrexol. And the limit of detection was 0.1 ng/ml for naltrexone and 0.36 ng/ml for 6-β-naltrexol. This method was used to measure the plasma concentration of naltrexone and 6-β-naltrexol in healthy subjects after a single oral 50 mg dose of naltrexone. This analytical method is a simple, sensitive, and accurate way of determining the pharmacokinetic profiles of naltrexone and its metabolites. The pharmacokinetic parameters were analyzed using both non-compartmental analysis performed for each subject according to standard methods and compartmental analysis with a parent-metabolite pharmacokinetic model that was fitted to the data, simultaneously, using the program ADAPT II. The tested parent-metabolite pharmacokinetic model successfully described the relationship between the plasma concentration of naltrexone and one of its major metabolites, 6-β-naltrexol.  相似文献   

12.
A simple and sensitive high-performance liquid chromatographic (HPLC) method was developed for quantification of aceclofenac in rat plasma. Ibuprofen was used as an internal standard (IS). The present method used protein precipitation for extraction of aceclofenac from rat plasma. Separation was carried out on reversed-phase C18 column (250 mm × 4.6 mm, 5 μ) and the column effluent was monitored by UV detector at 282 nm. The mobile phase used was methanol-triethylamine (pH 7.0; 0.3% v/v in Milli-Q water) (60:40%, v/v) at a flow rate of 1.0 mL min−1. This method was linear over the range of 50.0-3500.0 ng mL−1 with regression coefficient greater than 0.99. The mean recovery of aceclofenac and IS were 84.62 ± 3.23 and 89.19 ± 1.57%, respectively and the method was found to be precise, accurate, and specific during the study. The method was successfully applied for pharmacokinetic study of aceclofenac in rats.  相似文献   

13.
An isocratic HPLC method for the determination with screening purposes of anabolic androgenic steroids (AASs: fluoxymesterone, boldenone, nortestosterone, metandrostenolone, norethindrone, methyltestosterone and bolasterone), used as growth promoting agents, in finishing pig feed samples has been developed and validated. The separation was achieved by using a reversed-phase Chromolith RP-18e column at controlled temperature, UV-detection at 245 nm and epitestosterone as internal standard. The method development involved optimization of different aqueous-organic mobile phases using methanol or acetonitrile as organic modifiers, flow-rate and temperature. The optimum separation for these compounds was achieved at 40 °C using ultrapure water:acetonitrile (71:29, v/v) as mobile phase and 3 mL min−1 flow-rate, allowing the separation of AASs with baseline resolution in about 15 min. The optimized method was applied to the analysis of AASs in finishing pig feed samples. Prior to HPLC, sample preparation procedure was used by leaching using acetonitrile, saponification in a basic medium and solid-phase extraction using polymeric Abselut Nexus cartridges. Method validation has been carried out according to the European Commission Decision 2002/657/EC. The extraction efficiencies, decision limits (CCα) and detection capabilities (CCβ) for these compounds were in the range 83-96%, 27-37 and 32-47 μg kg−1 range, respectively. The within-laboratory reproducibility at 1, 1.5 and 2 CCβ concentration levels were smaller than 13, 10 and 8%, respectively. Finally, the proposed method was successfully applied to nine different kinds of animal feed.  相似文献   

14.
Khan A  Khan MI  Iqbal Z  Shah Y  Ahmad L  Nazir S  Watson DG  Khan JA  Nasir F  Khan A  Ismail 《Talanta》2011,84(3):789-801
A new, simple, economical and validated high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method has been developed and optimized for different experimental parameters to analyze the most common monothiols and disulfide (cystine, cysteine, homocysteine, methionine, reduced (GSH) and oxidized glutathione (GSSG)) and ascorbic acid present in human plasma and erythrocytes using dopamine as internal standard (IS). Complete separation of all the targets analytes and IS at 35 °C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved using 0.05% TFA:methanol (97:3, v/v) as a mobile phase pumped at the rate of 0.6 ml min−1 using electrochemical detector in DC mode at the detector potential of 900 mV. The limits of detection (3 S/N) and limits of quantification (10 S/N) of the studied compounds were evaluated using dilution method. The proposed method was validated according to standard guidelines and optimization of various experimental parameters and chromatographic conditions was carried out. The optimized and validated HPLC-ECD method was successfully applied for the determination of the abovementioned compounds in human plasma and erythrocytes. The method will be quite suitable for the determination of plasma and erythrocyte profile of ascorbic acid and aminothiols in oxidative stress and other basic research studies.  相似文献   

15.
A rapid and sensitive method was developed for the simultaneous determination of fluoxetine and its primary metabolite, norfluoxetine, in plasma. It was based on a column-switching approach with a precolumn packed with large size particles coupled with a liquid chromatography–electrospray ionisation–mass spectrometry (LC-ESI-MS). After a simple centrifugation, plasma samples were directly injected onto the precolumn. The endogenous material was excluded thanks to a high flow rate while analytes were retained by hydrophobic interactions. Afterwards, the target compounds were eluted in back flush mode to an octadecyl analytical column and detected by ESI-MS. The overall analysis time per sample, from plasma sample preparation to data acquisition, was achieved in less than 4 min. Method performances were evaluated. The method showed good linearity in the range of 25–1000 ng mL–1 with a determination coefficient higher than 0.99. Limits of quantification were estimated at 25 ng mL–1 for fluoxetine and norfluoxetine. Moreover, method precision was better than 6% in the studied concentration range. These results demonstrated that the method could be used to quantify target compounds. Finally, the developed assay proved to be suitable for the simultaneous analysis of fluoxetine and its metabolite in real plasma samples.  相似文献   

16.
A new simple, sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS) method for quantification of captopril after precolumn derivatization with p-bromo-phenacyl-bromide in human plasma was validated. Plasma samples were analysed on a monolithic column (Cromolith Performance-RP 18e, 100 mm × 4.6 mm I.D., 3 μm) under isocratic conditions using a mobile phase of a 40:60 (v/v) mixture of acetonitrile and 0.1% (v/v) formic acid in water. The flow rate was 1 mL/min at the column temperature of 30 °C. In these chromatographic conditions, the retention time was 4.4 min for captopril derivative. The detection of the analyte was in MRM mode using an ion trap mass spectrometer with electrospray positive ionisation. The monitored ions were 216, 253, 255, 268, 270 m/z derived from 415 m/z for derivatized captopril. The sample preparation was very simple and consisted in plasma protein precipitation from 0.2 mL plasma using 0.3 mL methanol after the derivatization reaction was completed. Calibration curves were generated over the range of 10-3000 ng/mL with values for coefficient of correlation greater than 0.993 and by using a weighted (1/y2) quadratic regression. The values for precision (CV %) and accuracy (relative error %) at quantification limit were less than 9.9% and 3.9%, for within- and between-run, respectively. The mean recovery of the analyte was 99%. Derivatized samples demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. This is the first reported LC-MS/MS method for analysis of captopril in human plasma that uses protein precipitation as sample processing procedure. The method is very simple and allows obtaining a very good recovery of the analyte. The validated LC-MS/MS method has been applied to a pharmacokinetic study of 50 mg captopril tablets on healthy volunteers.  相似文献   

17.
A rapid, selective, and sensitive method is described for the purification and analysis of fluoxetine and norfluoxetine using a solid-phase extraction column and gas chromatography-electron-capture detection. Linear quantitative response curves for fluoxetine and norfluoxetine are generated over a concentration range of 20-200 ng/ml. Overall extraction efficiency of the extraction procedure is found to be greater than 90% and greater than 75% with correlation coefficients of 0.997 and 0.993 for fluoxetine and norfluoxetine, respectively.  相似文献   

18.
A method for the determination of artemether (ART) and its main metabolite dihydroartemisinin (DHA) in plasma employing liquid-phase microextraction (LPME) for sample preparation prior to liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed. The analytes were extracted from 1 mL of plasma utilizing a two-phase LPME procedure with artemisinin as internal standard. Using the optimized LPME conditions, mean absolute recovery rates of 25 and 32% for DHA and ART, respectively, were achieved using toluene-n-octanol (1:1, v/v) as organic phase with an extraction time of 30 min. After extraction, the analytes were resolved within 5 min using a mobile phase consisting of methanol-ammonium acetate (10 mmol L−1, pH 5.0, 80:20, v/v) on a laboratory-made column based on poly(methyltetradecylsiloxane) attached to a zirconized-silica support. MS-MS detection was employed using an electrospray interface in the positive ion mode. The method developed was linear over the range of 5-1000 ng mL−1 for both analytes. Precision and accuracy were within acceptable levels of confidence (<15%). The assay was applied to the determination of these analytes in plasma from rats treated with ART. The two-phase LPME procedure is affordable and the solvent consumption was very low compared to the traditional methods of sample preparation.  相似文献   

19.
Summary An HPLC method with fluorescence detection has been developed for the determination of fluoxetine and its main metabolite norfluoxetine in human plasma. Pretreatment of the biological samples by liquid-liquid extraction was used to improve the sensitivity of a previously published SPE procedure. The method uses 200 μL plasma and recovery is good for both analytes. On a C8 column with a mixture of perchlorate buffer and acetonitrile as mobile phase fluoxetine, norfluoxetine and the internal standard (paroxetine) were eluted in less than 9 min, without interference from the biological matrix. Response for both analytes was linearly dependent on concentration over the range 2.5–500 ng mL−1, and repeatability (RSD%) was <4%. The limit of detection was 1 ng mL−1 for both fluoxetines. Application to plasma samples from depressed patients treated with fluoxetine gave good results. There was no interference from other common CNS drugs. This method seems to be a useful tool for clinical monitoring, because it requires small plasma samples and is highly sensitive and highly selective.  相似文献   

20.
Li G  Ji Z  Wu K 《Analytica chimica acta》2006,565(2):178-182
In the study, we developed a simple, rapid and sensitive method for the determination of tiopronin (TP) in human plasma, which was based on derivatization with p-bromophenacyl bromide (p-BPB) followed by liquid-liquid extraction and reverse-phase HPLC-UV detection. For the first time, the p-BPB was introduced into the derivatization of TP. The thiol group of TP was trapped with p-BPB to form a TP-p-BPB adduct, which can be very suitable for UV detection. From acidified plasma samples, the derivatized TP was extracted with 5 mL dichloromethane. Effective chromatographic separation was achieved using a C18 column (DIAMONSIL 150 mm × 4 mm i.d., 5 μm) based on an acetonitrile-water-trifluoroacetic acid (40:59.88:0.12, v/v/v) elution at a flow-rate of 1 mL/min. The IS and the derivatized TP were detected at 263 nm. No endogenous substances were found to interfere. The limit of quantification for derivatized TP (TP-p-BPB) in plasma was 40 ng/mL. The calibration curve for the derivatized TP showed linearity in the range 0.04-4 μg/mL with a regression coefficient corresponding to 0.9991 and the coefficient of the variation of the points of the calibration curve being lower than 10%. Extraction recoveries of the derivatized TP in plasma were greater than 72%. The method was suitably validated and successfully applied to determination of TP in human plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号