首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional treatment methods used to clean-up heavy metal contamination of soils and waters are cost intensive whereas more cost effective methods need to be developed. The use of plant materials to remediate heavy contamination has been studied for the past two decades. This technique has shown much promise for many of the common heavy metal contaminants, but few studies have focused on the lanthanide series elements. By investigating the binding and interactions of the lanthanide elements to alfalfa biomass, a more complete understanding of the binding mechanisms and the interactions of heavy metals with biomaterials can be obtained. Different chemical functional groups on the alfalfa biomass, carboxyl, amino, sulfur, and ester groups, were modified to investigate the binding mechanisms of erbium(III) and holmium(III). Batch experiments were performed with native and chemically modified alfalfa biomass suggesting that the carboxyl groups play a major role in the binding of erbium(III) and holmium(III) to the alfalfa biomass. In addition, X-ray absorption spectroscopy (XAS) studies corroborated the data obtained from the batch experiments.  相似文献   

2.
Batch laboratory experiments were performed to investigate the effects of pH, chemical modification, time dependency, and interference studies on the binding of trace concentrations of hexachloroplatinate(IV) and tetrachloroplatinate(II) to alfalfa biomass. The pH profiles were measured between pH 2.0 and 6.0. It was found that the binding of trace concentrations of platinum(IV and II) to alfalfa biomass was dependent on pH with a maximum binding occurring at pH 3.0 and a minimum at pH 6.0. When the alfalfa biomass was chemically modified (esterified), maximum binding occurred at pH 6.0 for both oxidation states of platinum. From the batch time dependency experiments, it was found that binding took at least 20 min to level off for both platinum oxidation states. Batch experiments were performed with various concentrations of calcium, magnesium, and sodium (0.1, 1.0, 10, 100 and 1000 ppm) and it was found that calcium affected the binding of platinum(II and IV) to the alfalfa biomass. It was determined that magnesium and sodium did not interfere appreciably with the binding of platinum in either of the oxidation states studied. Finally, batch experiments were performed with Mg2+, Ca2+ and Na+ in solutions at various concentrations, and it was observed that the binding was affected similarly to that by calcium alone.  相似文献   

3.
The complexation between the lanthanide metal ions Ce(III), Gd(III), Nd(III), Tb(III), and Er(III) and gliclazide produced 1 : 1 molar ratio metal: gliclazide (Glz) complexes coordinated in a monodentate fashion via the OH group and having the general formulas [M(Glz)Cl3(H2O)]·xH2O (M = Ce, Gd, Nd and x = 1, 3, 4, respectively) and [M(Glz)(H2O)4]Cl3·yH2O (M = Tb, Er and y = 1, 2, respectively). The structure of the synthesized lanthanide gliclazide complexes was assigned by IR, 1HNMR, and UV-Vis spectroscopy. Thermal analysis and kinetic and thermodynamic parameters gave evidence for the thermal stability of the Glz complexes. The latter showed a significant antimicrobial effect against some bacteria and fungi.  相似文献   

4.
The binding contants, adsorption free energies, absolute adsorbate number densities, and interfacial charge densities of Al(III), Sc(III), Y(III), La(III), and Gd(III) interacting with fused silica/water interfaces held at pH 4 were determined using second harmonic generation and the Eisenthal χ((3)) technique. By examining the relationship between the measured adsorption free energies and the electric double layer interfacial potential at multiple electrolyte concentrations, we elucidate the charge state and possible binding pathways for each ion at the fused silica surface. Al(III) and Sc(III) ions are found to bind to the fused silica surface as fully hydrated trivalent species in a bidentate geometry. In contrast, the Y(III), La(III), and Gd(III) ions are each shown to adsorb to the silica surface in a decreased charge state, but the extent and mode of binding varies with each ion. By quantifying the exponential sensitivity of the surface coverage of the adsorbed ions to their charge state directly at the fused silica/water interface, we provide benchmarks for theory calculations describing the interactions of metal ions with oxide interfaces in geochemistry and hope to improve the prediction of trivalent metal ion transport through groundwater environments.  相似文献   

5.
The isostructural heterometallic complexes [Ln(III)(2)Mn(III)(2)O(2)(ccnm)(6)(dcnm)(2)(H(2)O)(2)] (Ln = Eu (1Eu), Gd (1Gd), Tb (1Tb), Er (1Er); ccnm = carbamoylcyanonitrosomethanide; dcnm = dicyanonitrosomethanide) have been synthesised and structurally characterised. The in situ transition metal promoted nucleophilic addition of water to dcnm, forming the derivative ligand ccnm, plays an essential role in cluster formation. The central [Ln(III)(2)Mn(III)(2)(O)(2)] moiety has a "butterfly" topology. The coordinated aqua ligands and the NH(2) group of the ccnm ligands facilitate the formation of a range of hydrogen bonds with the lattice solvent and neighbouring clusters. Magnetic measurements generally reveal weak intracluster antiferromagnetic coupling, except for the large J(MnMn) value in 1Gd. There is some evidence for single molecule magnetic (SMM) behaviour in 1Er. Comparisons of the magnetic properties are made with other recently reported butterfly-type {Ln(III)(x)M(III)(4-x) (d-block)} clusters, x = 1, 2; M = Mn, Fe.  相似文献   

6.
The strong demand for rare-earth elements (REEs) is driven by their wide use in high-tech devices. New processes have to be developed for valorizing low-grade ores or alternative metal sources (such as wastes and spent materials). The present work contributed to the development of new sorbents for the recovery of rare earth ions from aqueous solutions. Functionalized mesoporous silica composite was synthesized by grafting diethylenetriamine onto composite support. The physical and chemical properties of the new sorbent are characterized using BET, TGA, elemental analysis, titration, FTIR, and XPS spectroscopies to identify the reactive groups (amine groups: 3.25 mmol N g−1 and 3.41 by EA and titration, respectively) and their mode of interaction with Nd(III) and Gd(III). The sorption capacity at the optimum pH (i.e., 4) reaches 0.9 mmol Nd g−1 and 1 mmol Gd g−1. Uptake kinetics are modeled by the pseudo-first-order rate equation (equilibrium time: 30–40 min). At pH close to 4–5, the sorbent shows high selectivity for rare-earth elements against alkali-earth elements. This selectivity is confirmed by the efficient recovery of REEs from acidic leachates of gibbsite ore. After elution (using 0.5 M HCl solutions), selective precipitation (using oxalate solutions), and calcination, pure rare earth oxides were obtained. The sorbent shows promising perspective due to its high and fast sorption properties for REEs, good recycling, and high selectivity.  相似文献   

7.
Dev K  Pathak R  Rao GN 《Talanta》1999,48(3):579-584
The complexing properties (capacity, pH effect, breakthrough curve) of a chelating resin, containing bicine ligands, were investigated for La(III), Nd(III), Tb(III), Th(IV) and U(VI). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 M hydrochloric acid. The capacity of the resin for La(III), Nd(III), Tb(III), Th(IV) and U(VI) was found to be 0.35, 0.40, 0.42, 0.25 and 0.38 mmol g(-1), respectively. Separation of U(VI) and Th(IV) from Ni(II), Zn(II), Co(II) and Cu(II) in a synthetic solution was carried out.  相似文献   

8.
The three title complexes, namely pentasodium tris(2,2′‐oxydi­acetato)­neodymium(III) bis­(tetra­fluoro­borate) hexahydrate and its samarium(III) and gadolinium(III) analogues, (I)–(III), respectively, are isomorphous and isostructural and have crystallographic D3 symmetry. The lanthanide metal ions are nine‐coordinate, binding to three O atoms of three oxodi­acetate ligands. One Na+ ion is octahedrally coordinated to six O atoms and the other Na+ ion is octahedrally coordinated to four O atoms and two F atoms. The structure is effectively an infinite three‐dimensional polymer, consistent with the exceptional crystal quality. The racemic solutions spontaneously resolve on crystallization. For the individual crystals selected for structural analysis, the Nd and Sm complexes have the Λ configuration, while the Gd complex has the Δ configuration. The lanthanide–oxy­gen distances show the expected contraction of ca 0.02 Å with increasing atomic number for the lanthanide metal.  相似文献   

9.
The synthesis and structural characterization of a gadolinium(III) complex with phenanthroline and thiocyanate ligands have been accomplished. The X-ray crystal structure reveals that Gd(III) in a slightly distorted square anti-prism coordinated with four thiocyanate ions and two phenanthroline molecules; one phenanthroline is protonated which compensates the charge of Gd(III) center. The crystal structure shows chemically significant non-covalent interactions like hydrogen bonding involving the thiocyanate ligand and ππ interactions between uncoordinated phenanthrolinium and coordinated phen. Investigation on the intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that close contacts are mainly associated with weak interactions. The fingerprint plots demonstrate that these weak interactions are important for crystal packing. The Gd(III) complex shows photophysical activity. The compound is capable of degrading toxic pollutants like nitroaromatics and may have far reaching consequences for cleaning these toxic pollutants from industrial effluents.  相似文献   

10.
With the objective of tuning the lipophilicity of ligands and maintaining the neutrality and stability of Gd(III) chelate, we designed and synthesized two bis(amide) derivatives of TTDA, TTDA-BMA and TTDA-BBA, and a mono(amide) derivative, TTDA-N-MOBA. The ligand protonation constants and complex stability constants for various metal ions were determined in this study. The identification of the microscopic sites of protonation of the amide ligand by 1H NMR titrations show that the first protonation site occurs on the central nitrogen atom. The values of the stability constant of TTDA-mono and bis(amide) complex are significantly lower than those of TTDA and DTPA, but the selectivity constants of these ligands for Gd(III) over Zn(II) and Cu(II) are slightly higher than those of TTDA and DTPA. On the basis of the water-exchange rate values available for [Gd(TTDA-BMA)(H2O)], [Gd(TTDA-BBA)(H2O)] and [Gd(TTDA-N-MOBA)(H2O)]-, we can state that, in general, the replacement of one carboxylate group by an amide group decreases the water-exchange rate of the gadolinium(III) complexes by a factor of about three to five. The decrease in the exchange rate is explained in terms of a decreased steric crowding and charge effect around the metal ion when carboxylates are replaced by an amide group. In addition, to support the HSA protein binding studies of lipophilic [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] complexes, further protein-complex binding was studied by ultrafiltration and relaxivity studies. The binding constants (KA) of [Gd(TTDA-N-MOBA)(H2O)]- and [Gd(TTDA-BBA)(H2O)] are 8.6 x 10(2) and 1.0 x 10(4) dm3 mol(-1), respectively. The bound relaxivities (r1(b)) are 51.8 and 52 dm3 mmol(-1) s(-1), respectively. The KA value of [Gd(TTDA-BBA)(H2O)] is similar to that of MS-325 and indicates a stronger interaction of [Gd(TTDA-BBA)(H2O)] with HSA.  相似文献   

11.
Heterogeneous self-assembly of thiacalix[4]arene-p-tetrasulfonate (TCAS), Ag(I), and Ln(III) (= Nd(III), Yb(III)) in aqueous solutions conveniently afforded ternary complexes emitting Ln(III)-centered luminescence in the near-infrared (NIR) region. A solution-state study revealed that the Ag(I)-Nd(III)-TCAS system gave a complex Ag(I)(4)·Nd(III)·TCAS(2) in a wide pH range of 6-12. In contrast, the Ag(I)-Yb(III)-TCAS system gave Ag(I)(2)·Yb(III)(2)·TCAS(2) at a pH of around 6 and Ag(I)(2)·Yb(III)·TCAS(2) at a pH of approximately 9.5. The structures of the Yb(III) complexes were proposed based on comparison with known Ag(I)-Tb(III)-TCAS complexes that show the same self-assembly behavior. In Ag(I)(2)·Yb(III)(2)·TCAS(2), two TCAS ligands sandwiched a cyclic array of a Ag(I)-Ag(I)-Yb(III)-Yb(III) core. In Ag(I)(2)·Yb(III)·TCAS(2), Yb(III) was accommodated in an O(8) cube consisting of eight phenolate O(-) groups from two TCAS ligands linked by two S-Ag-S linkages. Crystallographic analysis of Ag(I)(4)·Nd(III)·TCAS(2) revealed that the structure was similar to Ag(I)(2)·Yb(III)·TCAS(2) but that it had four instead of two S-Ag-S linkages. The number of water molecules coordinating to Ln(III) (q) estimated on the basis of the luminescent lifetimes was as follows: Ag(I)(4)·Nd(III)·TCAS(2), 0; Ag(I)(2)·Yb(III)(2)·TCAS(2), 2.4; and Ag(I)(2)·Yb(III)·TCAS(2), 0. These findings were compatible with the solution-state structures. The luminescent quantum yield (Φ) for Ag(I)(4)·Nd(III)·TCAS(2) was 4.9 × 10(-4), which is the second largest value ever reported in H(2)O. These findings suggest that the O(8) cube is an ideal environment to circumvent deactivation via O-H oscillation of coordinating water. The Φ values for Ag(I)(2)·Yb(III)(2)·TCAS(2) and Ag(I)(2)·Yb(III)·TCAS(2) were found to be 3.8 × 10(-4) and 3.3 × 10(-3), respectively, reflecting the q value. Overall, these results indicate that the ternary systems have the potential for a noncovalent strategy via self-assembly of the multidentate ligand, Ln(III), and an auxiliary metal ion to obtain a highly efficient NIR-emissive Ln(III) complex that usually relies on elaborate covalent linkage of a chromophore and multidentate ligands to expel coordinating water.  相似文献   

12.
The mechanism involved in the removal of Cr(III) by a green microalgal isolate, Chlorella miniata, was examined based on a series of batch experiments and microscopic analyses, and a mathematical model was proposed. Results showed that Cr(III) biosorption increased with the increase of pH from 2.0 to 4.5, and no significant changes in biosorption outside this pH range. Langmuir isotherm indicated that the maximum Cr(III) sorption capacity of Chlorella miniata was 14.17, 28.72, and 41.12 mg g(-1) biomass at pH 3.0, 4.0, and 4.5, respectively. Results from desorption studies, SEM (scanning electron microscopy), TEM (transmission electron microscopy), and EDX (energy-dispersive X-ray spectroscope) analyses confirmed that surface complexation was the main process involved in Cr(III) biosorption. Potentiometric titration revealed that carboxyl (pKa1 = 4.10), phosphonate (pKa2 = 6.36) and amine (pKa3 = 8.47) functional groups on the surface of Chlorella miniata were the possible sites for Cr uptake, and their average amounts were 0.53, 0.39, and 0.36 mmol g(-1) biomass, respectively. A surface complexation model further indicated that carboxyl group played the main role in Cr(III) complexation, with a binding constant of K11 = 1.87 x 10(-4) and K12 = 6.11 x 10(-4) for Cr3+ and Cr(OH)2+, respectively. This model also suggested that the hydroxy species was more easily to complex with the cell surface of Chlorella miniata.  相似文献   

13.
The proton and metal complex equilibria of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) (CDTP) with lanthanide(iii) ions, where Ln(III) = La(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Ho(III) and Lu(III) were studied. The stoichiometry, protonation and complex formation constants were determined by potentiometric titration at 25.0 degrees C and ionic strength of 0.1 mol dm(-3) (KCl). All metal ions form several species: [LnH4L]-, [LnH3L](2-), [LnH2L](3-), [LnHL](4-), [LnL](5-), [LnH(-1)L](6-) and [LnH(-2)L](7-) in the pH range between 2 and 11. The stability constants log beta(LnL) were found to be between 14.7 and 16.7. The studied complexes were also characterized by spectroscopic methods (31P NMR, UV-Vis absorption and emission spectroscopy). These studies allowed to reveal a distinct structural change of the Ln(III)-CDTP complex which occurs between protonated and hydroxy species in solutions at pH around 7.5. The major change is caused by the involvement of both nitrogen donors in the metal ion coordination occurring in ML species. The data obtained from UV-Vis spectroscopy allowed to draw conclusions about complex symmetry and to estimate a number of coordinated water molecules. The hydration number or more precisely the number of two OH oscillators was found to be approximately one in all species formed over the pH range between 5 and 10. The structure of the major hydroxy complex was supported by X-ray crystallographic data. The crystal structures of the Eu(III) and Tb(III) complexes clearly show that the CDTP ligand is coordinated to the Ln(III) ion by two nitrogen and four oxygen atoms in such a way that only one oxygen atom from each phosphonic group is placed in the lanthanide inner sphere. The monomeric complex anion is connected to a symmetry related ion through short hydrogen bonds formed by two hydroxy ions and one water molecule. In this way the two neighbouring anions form a quasi-dimer in which one of the Ln(III) ion is seven-coordinate (two N atoms, four O atoms and one hydroxy ion) and the other is eight-coordinate (two N atoms, four O atoms, one hydroxy ion and one water molecule).  相似文献   

14.
Three novel phosphorus-containing analogues of H(5)DTPA (DTPA = diethylenetriaminepentaacetate) were synthesised (H6L1, H5L2, H5L3). These compounds have a -CH2-P(O)(OH)-R function (R = OH, Ph, CH2NBn2) attached to the central nitrogen atom of the diethylenetriamine backbone. An NMR study reveals that these ligands bind to lanthanide(III) ions in an octadentate fashion through the three nitrogen atoms, a P-O oxygen atom and four carboxylate oxygen atoms. The complexed ligand occurs in several enantiomeric forms due to the chirality of the central nitrogen atom and the phosphorus atom upon coordination. All lanthanide complexes studied have one coordinated water molecule. The residence times (tau(M)298) of the coordinated water molecules in the gadolinium(III) complexes of H6L1 and H5L2 are 88 and 92 ns, respectively, which are close to the optimum. This is particularly important upon covalent and noncovalent attachment of these Gd(3+) chelates to polymers. The relaxivity of the complexes studied is further enhanced by the presence of at least two water molecules in the second coordination sphere of the Gd(3+) ion, which are probably bound to the phosphonate/phosphinate moiety by hydrogen bonds. The complex [Gd(L3)(H2O)](2-) shows strong binding ability to HSA, and the adduct has a relaxivity comparable to MS-325 (40 s(-1) mM(-1) at 40 MHz, 37 degrees C) even though it has a less favourable tau(M) value (685 ns). Transmetallation experiments with Zn(2+) indicate that the complexes have a kinetic stability that is comparable to-or better than-those of [Gd(dtpa)(H2O)](2-) and [Gd(dtpa-bma)(H2O)].  相似文献   

15.
A novel bis-beta-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.  相似文献   

16.
The ligand L(1), which contains a chelating 2-(2-pyridyl)benzimidazole (PB) unit with a pendant anthacenyl group An connected via a methylene spacer, (L(1) = PB-An), was used to prepare the 8-coordinate lanthanide(III) complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Gd, Er, Yb) which have been structurally characterised and all have a square antiprismatic N(2)O(6) coordination geometry. Whereas free L(1) displays typical anthracene-based fluorescence, this fluorescence is completely quenched in its complexes. The An group in L(1) acts as an antenna unit: in the complexes [Ln(hfac)(3)(L(1))] (Ln = Nd, Er, Yb) selective excitation of the anthracene results in sensitised near-infrared luminescence from the lanthanide centres with concomitant quenching of An fluorescence. Surprisingly, the anthracene fluorescence is also quenched even in the Gd(III) complex and in its Zn(II) adduct in which quenching via energy transfer to the metal centre is not possible. It is proposed that the quenching of anthracene fluorescence in coordinated L(1) arises due to intra-ligand photoinduced electron-transfer from the excited anthracene chromophore (1)An* to the coordinated PB unit generating a short-lived charge-separated state [An(.+)-PB(.-)] which collapses by back electron-transfer to give (3)An*. This electron-transfer step is only possible upon coordination of L(1) to the metal centre, which strongly increases the electron acceptor capability of the PB unit, such that (1)An* --> PB PET is endoergonic in free L(1) but exergonic in its complexes. Thus, rather than a conventional set of steps ((1)An* -->(3)An* --> Ln), the sensitization mechanism now includes (1)An* --> PB photoinduced electron transfer to generate charge-separated [An(.+)-PB(.-)], then back electron-transfer to generate (3)An* which finally sensitises the Ln(III) centre via energy transfer. The presence of (3)An* in L(1) and its complexes is confirmed by nanosecond transient absorption studies, which have also shown that the (3)An* lifetime in the Nd(III) complex matches the rise time of Nd-centred near-infrared emission, confirming that the final step of the sequence is (3)An* --> Ln(III) energy-transfer.  相似文献   

17.
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.  相似文献   

18.
从钆螯合物造影剂的原理、条件、研究进展、以及提高其弛豫效率的方法4个方面进行介绍与总结;在研究进展方面,着重介绍了荧光、生物敏感造影剂;并且从酶活性、金属离子活性、pH活性3个方面对生物敏感造影剂进行了论述。  相似文献   

19.
The mid- and far-infrared spectra of Ho(III) and Gd(III) chloride hexahydrate, anhydrous Gd(III) formate, Ho(III) and Gd(III) acetate hemihydrate and trihydrate, and Gd(III) benzoate monohydrate have been computed by the ROHF/SBKJC method in GAMESS. The calculated spectra successfully simulated the experimental spectra down to 50 cm(-1). Absorptions due to coordinated water were distinguished from those due to O-C-O bending in chelate rings. The number of water molecules bound to Ln(III) in a complex was successfully predicted from the match of the experimental spectra to the simulated Ln-O vibrations in the far IR.  相似文献   

20.
The lanthanide(III) complexes of three tetraamide DOTA bearing pyridyl, phenolic and hydroxypyridyl substituents have been studied by NMR, luminescence and cyclic voltammetry. The relaxivity profiles of the gadolinium complexes of the pyridyl and phenolic ligands were flat and essentially the same between pH 2 and 8. The hydroxypyridyl ligand, however, exhibited two regions of enhanced relaxivity. The small relaxivity enhancement (25 %) at lower pH (pH 2-4) has been attributed to an increase in the prototropic exchange of the coordinated water molecule while the slightly larger enhancement (84 %) at higher pH (pH 6-9) reflects deprotonation of the ligand amide protons. Deprotonation of the amides results in the formation of an intramolecular acid-base pair interaction with the phenolic protons and this, in turn, causes a highly organized second hydration sphere to come into effect, thereby increasing the relaxivity. The water relaxivity of the Gd(3+)-hydroxypyridyl complex is further enhanced upon binding to serum albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号