首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan Wang  Zhen-zhen Chen 《Talanta》2010,82(2):534-621
This report described the direct voltammetric detection of peroxynitrite (ONOO) at a novel cyanocobalamin modified glassy carbon electrode prepared by electropolymeriation method. The electrochemical behaviors of peroxynitrite at the modified electrode were studied by cyclic voltammetry. The results showed that this new electrochemical sensor exhibited an excellent electrocatalytic activity to oxidation of peroxynitrite. The mechanism of catalysis was discussed. Based on electrocatalytic oxidation of peroxynitrite at the poly(cyanocobalamin) modified electrode, peroxynitrite was sensitively detected by differential pulse voltammetry. Under optimum conditions, the anodic peak current was linear to concentration of peroxynitrite in the range of 2.0 × 10−6 to 3.0 × 10−4 mol L−1 with a detection limit of 1.0 × 10−7 mol L−1 (S/N of 3). The proposed method has been applied to determination of peroxynitrite in human serum with satisfactory results. This poly(cyanocobalamin) modified electrode showed high selectivity and sensitivity to peroxynitrite determination, which could be used in quantitative detection of peroxynitrite in vivo and in vitro.  相似文献   

2.
A multi-wall carbon nanotubes (MWNTs)-dihexadecyl hydrogen phosphate (DHP) film-coated glassy carbon electrode (GCE) was fabricated, and the electrochemical behaviors of acyclovir on the MWNTs-DHP film-coated GCE were investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). The oxidation peak current of acyclovir increased significantly and the peak potential shifted negatively at the MWNTs-DHP film-modified GCE, compared with that at a bare GCE. The results showed that this nano-structured film electrode exhibited excellent enhancement effects on the electrochemical oxidation of acyclovir. Consequently, a simple and sensitive electroanalytical method was developed for the determination of acyclovir. The oxidation peak current was proportional to the concentration of acyclovir from 8.0 × 10−8 to 1.0 × 10−5 mol/L. The detection limit was about 3.0 × 10−8 mol/L for 60 s accumulation at 0.00 V. The proposed method was demonstrated by using acyclovir tablets and the result was satisfying.  相似文献   

3.
In this work arrays of palladium nanoparticles were synthesized on carbon ionic liquid electrode (CILE) (Pd/CILE), and the electrocatalytic oxidation of hydrazine was investigated using this electrode. Electrochemical oxidation of hydrazine in phosphate buffer (pH 7) was performed using cyclic voltammetry and square wave voltammetric techniques (SWV). Using the proposed electrode, a highly reproducible and well-defined peak was obtained for hydrazine at a very low potential of −0.02 V versus Ag/AgCl. A linear dynamic range of 5-800 μM with an experimental detection limit of 0.82 μM was obtained. These results show that the proposed electrode displays better electrocatalytic activity compared to the previously reported palladium modified electrodes towards oxidation of hydrazine.  相似文献   

4.
Electrochemical characterization of gold cysteamine self-assembled monolayer, in situ functionalized with ethylenediaminetetraacetic acid (Au-CA-EDTA SAM), is described by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Osteryoung square wave voltammetry (OSWV). The results obtained by EIS and CV, in the presence of [Fe(CN)6]3−/4− redox probe, show that EDTA is successfully grafted to the surface of Au-CA electrode. Reproducible and reversible variation of the Rct and ΔEp as a function of solution pH show that Au-CA-EDTA SAM is stable in a wide range of pH and potentials. Accumulation of the Pb2+ and Cu2+ ions on the Au-CA-EDTA SAM electrode is investigated using faradaic currents or impedimetric effects measured by OSWV and EIS, respectively. These results reveal the presence of active complexing functional groups of EDTA on the surface, and thus, the formation of Au-CA-EDTA SAM electrode. The new sensor responds to the Pb2+ and Cu2+ separately and simultaneously in a wide linear range of concentrations.  相似文献   

5.
Wang F  Zhao F  Zhang Y  Yang H  Ye B 《Talanta》2011,84(1):160-168
The present paper describes to modify a double stranded DNA-octadecylamine (ODA) Langmuir-Blodgett film on a glassy carbon electrode (GCE) surface to develop a voltammetric sensor for the detection of trace amounts of baicalein. The electrode was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). Electrochemical behaviour of baicalein at the modified electrode had been investigated in pH 2.87 Britton-Robinson buffer solutions by CV and square wave voltammetry (SWV). Compared with bare GCE, the electrode presented an electrocatalytic redox for baicalein. Under the optimum conditions, the modified electrode showed a linear voltammetric response for the baicalein within a concentration range of 1.0 × 10−8-2.0 × 10−6 mol L−1, and a value of 6.0 × 10−9 mol L−1 was calculated for the detection limit. And the modified electrode exhibited an excellent immunity from epinephrine, dopamine, glucose and ascorbic acid interference. The method was also applied successfully to detect baicalein in the medicinal tablets and spiked human blood serum samples with satisfactory results.  相似文献   

6.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

7.
Monolayers of 3,3′-dithiodipropionic acid (DTDPA) were prepared on a polycrystalline gold electrode through a self-assembly procedure to produce a gold 3,3′-dithiodipropionic acid self-assembled monolayer (AuDTDPA) modified electrode. The characterization of the AuDTDPA electrode was investigated by cyclic voltammetry and ac impedance using the [Fe(CN)6]3−/4− redox couple. The electrochemical behavior of DA on the modified electrode AuDTDPA was studied by cyclic and square-wave voltammetries, using phosphate buffer as supporting electrolyte. The oxidation peak current for DA increases linearly with concentration in the range of 0.35 × 10−5 to 3.4 × 10−5 mol L−1. The performance of the AuDTDPA modified electrode was evaluated for the electroanalytical determination of dopamine (DA) in a pharmaceutical formulation. The AuDTDPA modified electrode showed a stable behavior and the presence of surface-COOH groups avoided the passivation of the electrode surface during the dopamine oxidation.  相似文献   

8.
The preparation and electrochemical characterization of a carbon paste electrode modified with layered birnessite-type manganese oxide for use as a sodium sensor is described. The effects of powder synthesis process (sol-gel and redox precipitation) for birnessite on the electrochemical activity of the sensor was investigated by cyclic voltammetry. The carbon paste electrode modified with birnessite-type manganese oxide that was synthesized by the sol-gel method showed a best electrochemical for sodium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III) to Mn(IV) at the surface of the electrode and consequently the sodium ions extraction into the birnessite structure. The best voltammetric response was obtained for an electrode composition of 15% (w/w) birnessite oxide in the paste, a TRIS buffer solution of pH 8.0 and a scan rate of 50 mV s−1. A sensitive linear voltammetric response for sodium ions was obtained in the concentration range of 7.89 × 10−5 to 3.49 × 10−4 mol L−1 with a slope of 37.5 μA L mmol−1 and a detection limit (3σ/slope) of 3.43 × 10−5 mol L−1 using cyclic voltammetry. Under the working conditions, the proposed method was successfully applied to determination of sodium ions in urine samples.  相似文献   

9.
A glassy carbon electrode (GCE) was modified with electropolymerized films of isonicotinic acid in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode showed an excellent electrocatalytical effect on the oxidation of norepinephrine (NE). In PBS of pH 7.4, the oxidation current increased linearly with two concentration intervals of NE, one is 4.0×10−7 to 1.0×10−5 M, the other is 1.0×10−5 to 2.0×10−4 M. The detection limit (S/N=3) obtained by DPV was 6.0×10−9 M. Then the modified electrode was used to determine NE in an excess of ascorbic acid (AA) by difference pulse voltammetry. The peak potentials recorded in a PBS of pH 7.4 were −68 and +111 mV versus SCE for AA and NE, respectively. The high selectivity and sensitivity for NE was found to be due to the very distinct attracting interaction between NE cations and the negtively charged poly(isonicotinic acid) film in pH 7.4 PBS. The proposed method exhibited good recovery and reproducibility.  相似文献   

10.
Liu AL  Zhang SB  Chen W  Huang LY  Lin XH  Xia XH 《Talanta》2008,77(1):314-318
The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (α) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0 × 10−8 to 4.0 × 10−7 M and 1.0 × 10−6 to 1.0 × 10−5 M. The detection limit is 5.0 × 10−9 M. This method has been successfully applied to the detection of ISO in tablets.  相似文献   

11.
The direct and selective detection of ascorbate at conventional carbon or metal electrodes is difficult due to its large overpotential and fouling by oxidation products. Electrode modification by electrochemical reduction of diazonium salts of different aryl derivatives is useful for catalytic, analytical and biotechnological applications. A monolayer of o-aminophenol (o-AP) was grafted on a glassy carbon electrode (GCE) via the electrochemical reduction of its in situ prepared diazonium salts in aqueous solution. The o-aminophenol confined surface was characterized by cyclic voltammetry. The grafted film demonstrated an excellent electrocatalytic activity towards the oxidation of ascorbate in phosphate buffer of pH 7.0 shifting the overpotential from +462 to +263 mV versus Ag/AgCl. Cyclic voltammetry and d.c. amperometric measurements were carried out for the quantitative determination of ascorbate and uric acid. The catalytic oxidation peak current was linearly dependent on the ascorbate concentration and a linear calibration curve was obtained using d.c. amperometry in the range of 2-20 μM of ascorbate with a correlation coefficient 0.9998, and limit of detection 0.3 μM. The effect of H2O2 on the electrocatalytic oxidation of ascorbate at o-aminophenol modified GC electrode has been studied, the half-life time and rate constant was estimated as 270 s, and 2.57 × 10−3 s−1, respectively. The catalytically selective electrode was applied to the simultaneous detection of ascorbate and uric acid, and used for their determination in real urine samples. This o-AP/GCE showed high stability with time, and was used as a simple and precise amperometric sensor for the selective determination of ascorbate.  相似文献   

12.
A glassy carbon electrode modified with poly(alizarin red)/electrodeposited graphene (PAR/EGR) composite film was prepared and applied to detect ciprofloxacin (CPFX) in the presence of ascorbic, uric acid and dopamine. The morphology and interface property of PAR/EGR films were examined by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrocatalytic oxidation of CPFX on AR/EGR was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The linearity ranged from 4 × 10−8 to 1.2 × 10−4 M with a detection limit (S/N = 3) of 0.01 μM. The modified electrode could be applied to the individual determination of CPFX as well as the simultaneous determination of CPFX, ascorbic acid, uric acid and dopamine. This method proved to be a simple, selective and rapid way to determine CPFX in pharmaceutical preparation and biological media.  相似文献   

13.
Yasri NG  Halabi AJ  Istamboulie G  Noguer T 《Talanta》2011,85(5):2528-2533
A new simple chronoamperometry methodology was developed for the ultrasensitive determination of lead ions using a PEDOT:PSS coated graphite carbon electrode. The polymer was directly coated on a graphite carbon electrode and characterized using simple cycle voltammetric measurements. The presence of lead ions induced a cathodic peak starting at −550 ± 10 mV vs. Ag/AgCl, and an anodic peak starting at −360 ± 10 mV vs. Ag/AgCl. Electroaccumulation of lead ions onto the PEDOT:PSS modified electrode was performed at −650 mV vs. Ag/AgCl for 30 s in a pH 2.2 hydrochloric acid solution. Chronoamperometry measurements were carried out at −350 mV vs. Ag/AgCl allowing the oxidation of accumulated lead. Using this method, lead ions were detected for concentrations ranging between 2.0 nmol L−1 and 0.1 μmol L−1 (R2 = 0.999). The detection limit was calculated to be 0.19 nmol L−1 and the quantification limit of 0.63 nmol L−1. The method was shown to be highly precise and sensitive, negligible interference was detected from other metal ions. The proposed method was successfully applied for the detection of lead ions in vegetables.  相似文献   

14.
The syntheses of new cobalt phthalocyanine (CoPc) complexes, tetra-substituted with diethylaminoethanethio at the peripheral (complex 3a) and non-peripheral (complex 3b) positions, and with benzylmercapto at the non-peripheral position (complex 5), are reported. The effects of the nature and position of substituent on the spectral, electrochemical and spectroelectrochemical properties of these complexes are investigated. Solution electrochemistry of complex 3a showed three distinctly resolved redox processes attributed to CoIIIPc−2/CoIIPc−2 (E½ = +0.64 V versus Ag|AgCl), CoIIPc−2/CoIPc−2 (E½ = −0.24 V versus Ag|AgCl) and CoIPc−2/CoIPc3 (E½ = −1.26 V versus Ag|AgCl) species. No ring oxidation was observed in complex 3a. Complex 3b showed both ring-based oxidation, attributed to CoIIIPc−1/CoIIIPc−2 species (Ep = +0.86 V versus Ag|AgCl), and ring-based reduction associated with CoIPc−2/CoIPc−3 species (E½ = −1.46 V versus Ag|AgCl), with the normal metal-based redox processes in CoPc complexes: CoIIIPc−2/CoIIPc−2 (Ep = +0.41 V versus Ag|AgCl) and CoIIPc−2/CoIPc−2 (E½ = −0.38 V versus Ag|AgCl). Solution electrochemistry of complex 5 showed the same type and number of species observed in complex 3a: CoIIIPc−2/CoIIPc−2 (Ep = +0.59 V versus Ag|AgCl), CoIIPc−2/CoIPc−2 (E½ = −0.26 V versus Ag|AgCl) and CoIPc−2/CoIPc−3 (E½ = −1.39 V versus Ag|AgCl) species. These processes were confirmed using spectroelectrochemistry.  相似文献   

15.
M. Pérez-Ortiz 《Talanta》2010,82(1):398-630
In this work, the electrochemical behavior and the analytical application of atomoxetine, a selective noradrenaline reuptake inhibitor, are studied. Atomoxetine, studied by differential pulse voltammetry and cyclic voltammetry on a glassy carbon electrode, exhibited an anodic response in aqueous media with pH between 1.5 and 7. In non-aqueous medium (acetonitrile), the drug exhibited two irreversible oxidation peaks that are diffusion controlled. From chronocoulometric studies in acetonitrile, it was determined that each oxidation signal involves two and four electrons, respectively. For analytical purposes, a differential pulse voltammetry technique in 0.1 mol L−1 perchloric acid was selected, which exhibited adequate figures of merit. The percent recovery was 96.6 ± 1.2 and the detection and quantitation limits were 6.9 × 10−5 and 1.0 × 10−4 mol L−1, respectively. Also, results indicate that excipients do not interfere with the oxidation signal of atomoxetine, which leads to the conclusion that the developed method is satisfactorily selective for atomoxetine quantification in pharmaceuticals with no prior separation or extraction necessary. Finally, the proposed voltammetric method was successfully applied to both the assay and the uniformity content of atomoxetine in capsules. For comparison, high-performance liquid chromatography analysis was also performed.  相似文献   

16.
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF4 0.1 mol L−1) for indole (−2.27 V) and carbazole (−2.67 V) versus Ag|AgCl|KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L−1 and a limit of detection (L.O.D) of 7.48 and 2.66 μg L−1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 ± 0.3 and 64.6 ± 0.9 mg L−1 and in spiked diesel samples were 9.29 ± 1 and 142 ± 1 mg L−1, respectively. The recovery was evaluated and the results shown the values of 88.9 ± 0.4 and 90.2 ± 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests.  相似文献   

17.
A sensitive, rapid and reliable electrochemical method based on voltammetry at single wall carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of prednisolone and prednisone in human body fluids and pharmaceutical preparations. The electrochemical response of both the drugs was evaluated by osteryoung square wave voltammetry (OSWV) in phosphate buffer medium of pH 7.2. The modified electrode exhibited good electrocatalytic properties towards prednisone and prednisolone reduction with a peak potential of ∼−1230 and ∼−1332 mV respectively. The concentration versus peak current plots were linear for both the analytes in the range 0.01-100 μM and the detection limit (3σ/slope) observed for prednisone and prednisolone were 0.45 × 10−8, 0.90 × 10−8 M, respectively. The results of the quantitative estimation of prednisone and prednisolone in biological fluids were also compared with HPLC and the results were in good agreement.  相似文献   

18.
?ükriye Ulubay 《Talanta》2010,80(3):1461-5138
Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1 × 10−9 to 1 × 10−5 M for UA and 1 × 10−9 to 1 × 10−7 M for DA using DPVs method. The detection limits were determined as 8 × 10−10 M (s/n = 3) for UA and 8.5 × 10−10 M (s/n = 3) for DA at a signal-to-noise ratio of 3.  相似文献   

19.
Different structures have been found for poly(α-tetrathiophene) [poly(α-4TF)] electrosynthesized on Pt by anodic oxidation of 1.0 mM monomer solutions in media such as 45:35:20 (v/v/v) acetonitrile/THF/DMF, 45:35:20 (v/v/v) acetonitrile/ethanol/DMF and 72:28 (v/v) acetonitrile/DMF containing 0.1 M LiClO4; as well as 72:28 (v/v) acetonitrile/DMF with 0.1 M NaClO3, under dynamic and static conditions at 25 °C. In all cases the polymer was generated by chronoamperometry at 1.000 V vs. Ag∣AgCl, corresponding to the first oxidation peak detected by cyclic voltammetry. Uniform, adherent, insoluble and black polymer films were obtained under these conditions. The resulting structures have been elucidated by combining the information of their IR spectrum, nox-value and doping level of the counterion. The degree of crosslinking of every polymer has been quantified and related to the molecular flow of monomer on the Pt electrode. A monomer concentration flow between 4 × 10−6 and 5 × 10−6 mmol cm−2 s−1 was determined as the limiting value below which the polymer grows with crosslinking. This value corresponds to the electropolymerization rate of α-4TF by Pt area unit at 25 °C.  相似文献   

20.
Glassy carbon electrodes modified with (5-amino-1,10-phenanthroline)bis(bipyridine)ruthium(II) chloride hydrate, [(bpy)2Ru(5-phenNH2)]Cl2·H2O, are shown to oxidize hydrazine with excellent sensitivity. The presence of an amine group on the ruthenium complex facilitates electropolymerization onto the electrode surface. Using cyclic voltammetry, a large catalytic current is observed upon oxidation of hydrazine in phosphate buffer (pH 5.0), compared to the current obtained from the ruthenium-modified electrode with no hydrazine present. The sensitivity of cyclic voltammetry is sufficient for obtaining a linear calibration curve for hydrazine over the range of 10−5 to 10−2 M. Hydrodynamic amperometry was used to determine the working potential for flow injection analysis. The limit of detection for hydrazine was determined to be 8.5 μM using FIA. The thickness of these films was shown to increase linearly with the number of electropolymerization cycles, in the range of 1000-2500 nm for 5-20 cycles, respectively, using Rutherford backscattering spectrometry (RBS). RBS analysis also suggests that the film is multilayered with the outermost layers containing a high ruthenium concentration, followed by layers where the concentration of ruthenium decreases linearly and approaches zero at the electrode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号