首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The HX product state distributions from the H+Cl2, Br2, NO2Cl, PCl3, and NO2 reactions have been studied by the infrared chemiluminescence technique in two different laboratories with two types of reactors; a fast-flow system with = 1 Torr of Ar buffer gas and a low-pressure, cold-wall system (usually called the cold-wall arrested-relaxation method). The same Einstein coefficients were used in both laboratories to convert intensities to populations and emphasis is placed upon evaluation of the reliability of the resulting vibrational-rotational HX distributions. Good agreement was found between the HX distributions from the cold-wall reactors from the two laboratories and for both types of reactors for all of the reactions, except PCl3. For the H+Cl2, Br2 and NO2 reactions, our general results are in good accord with presently accepted data; but, our experiments provide somewhat more detail than in the literature. The NO2Cl results are new and <fv(HCl) > = 0.40 and <fR(HCl) > = 0.01. The H+PCl3 reaction appears to proceed by two channels and the HCl chemiluminescence cannot be assigned only to HCl formation via direct Cl atom abstraction.  相似文献   

2.
We present the results of electrochemical and structural investigations of several carbon materials: carbon blacks AD 100 and XC 72, ultradisperse diamond (UDD), multiwalled nanotubes (MWNT), various types of filament-like carbon materials (CFC series), and similar carbon materials promoted with cobalt tetra(para-methoxyphenyl) porphyrin (CoTMPhP) pyropolymer (PP). The electrochemical studies were performed at room temperature in 0.5 M H2SO4 by using a rotating disk electrode (RDE), a rotating ring-disk electrode (RRDE) (a thin layer of test material was applied onto the disk electrode), and a floating electrode. Structural characterization of initial and promoted carbon materials involved the determination of specific surface area by the BET method and by the polarization capacitance from cyclic voltammograms, and the particle morphology and dimensions by the transmission electron microscopy (TEM) method. The study of kinetics and mechanism of oxygen electroreduction on carbon materials promoted with CoTMPhP PP showed that the catalysts based on carbon materials of CFC and UDD series possess high specific activity in this reaction and high selectivity with respect to oxygen reduction to water. These catalysts are superior to the catalysts, in which carbon blacks AD 100 and XC 72 are used as the supports, in the specific activity.  相似文献   

3.
对于碱性燃料电池的阴极反应,开发具有优异催化性能的新型催化剂至关重要.本工作采用一种简单的热解方法合成了硼、氮掺杂的二硫化钼(B,N-MoS2)材料并将其应用于氧还原(ORR)电催化分析.通过循环伏安法(CV)与线性扫描伏安法(LSV)等电化学分析方法,采用旋转盘电极(RDE)与旋转环盘电极(RRDE)等技术测试了该材...  相似文献   

4.
The use of biotinylated alginate as an immobilization matrix of enzymes on the surface of the amperometric transducer is described herein. The model used is that of the well-established glucose detection. Several types of immobilization protocols were tested. In the exception of one protocol, biotin labeled glucose oxidase was shown to first require conjugation with avidin, before its immobilization onto a biotin-alginate gel matrix. The response of the biosensors to incremental additions of glucose, was measured by potentiostating the modified electrodes at 0.6 V/SCE. The permeability of the modified electrodes was thereafter measured by using rotating disk electrode (RDE) voltammetry with ferrocenemonocarboxylic acid as the electroactive probe.  相似文献   

5.
A porous reticulated vitreous carbon (RVC) electrode and a disk electrode coupled in tandem in an electrochemical flow cell has been used for electrolytic removal of interferents before amperometric glucose detection. The electrolytic efficiency at the upstream RVC electrode is 100% at a flow rate of 0.1 mL min−1 or lower. Potential interferents such as acetaminophen, ascorbic acid, and uric acid can be completely eliminated by electrolysis at the RVC electrode. A mixed monolayer comprising glucose oxidase (GOD) and ferrocenyl-1-undecanethiol preformed at the downstream gold disk electrode was used as a mediator-based amperometric glucose sensor. The dependence of the amperometric current on the glucose concentration exhibits good linearity across over three orders of magnitude. The glucose measurements were also found to be reproducible (RSD < 3.5%) and accurate. Unlike the chemiluminescence method, this device obviates the use of carcinogenic substrates and the glucose sensor performance is independent of the oxygen present in sample. On the basis that the RVC electrode requires minimal cleanup and the GOD-modified electrode remains stable for a week, the electrochemical flow cell should be amenable for automated on-line removal of redox interferents for other types of enzyme-based biosensors.  相似文献   

6.
Tyrosinase [EC 1.14.18.1], immobilized on a rotating disk, catalyzed the oxidation of catechols to o-benzoquinone, whose back electrochemical reduction was detected on glassy carbon electrode surface at −150 mV versus Ag/AgCl/NaCl 3 M. Thus, when penicillamine (PA) was added to the solution, this thiol-containing compound participate in Michael type addition reactions with o-benzoquinone to form the corresponding thioquinone derivatives, decreasing the reduction current obtained proportionally to the increase of its concentration. This method could be used for sensitive determination of PA in drug and human synthetic serum samples. A linear range of 0.02–80 μM (r = 0.999) was obtained for amperometric determination of PA in buffered pH 7.0 solutions (0.1 M phosphate buffer). The biosensor has a reasonable reproducibility (R.S.D. < 4.0%) and a very stable amperometric response toward this compound (more than 1 month).  相似文献   

7.
《Electroanalysis》2006,18(2):115-120
Electrochemical method of detection of heparin polyion was developed based on voltammetry of heparin on a rotating glassy carbon (GC) electrode coated with a plasticized PVC membrane. The membrane was deposited on the GC disk by spin‐coating technique using a mixture of solutions of PVC in tetrahydrofuran, and 1,1′‐dimethylferrocene (DMFc) and hexadecyltrimethylammonium tetrakis(4‐chlorophenyl)borate (HTMATPBCl) in o‐nitrophenyl octyl ether. UV/vis reflection spectrometry was used to evaluate the membrane thickness, which exhibits a linear correlation with the membrane resistance measured by impedance spectroscopy. It is shown that this electrode can be used for amperometric or coulometric detection of heparin in aqueous samples of medically relevant concentrations (1–10 U mL?1), with a detection limit of 1.4 U mL?1. Evidence is provided indicating that the current determining step is the reversible adsorption of the ion‐pair of heparin polyion with HTMA+ cation at the membrane/aqueous electrolyte interface, which is driven by oxidation of DMFc at the GC/membrane interface.  相似文献   

8.
The effect of a perfluorocarbon emulsion oxygen therapeutic (PEOT) on the detection of the drugs theophylline and phenytoin was explored using a commercial enzyme multiplied immunoassay technique (EMIT®). The EMIT technique is based on the enzymatic production of NADH, which is typically detected in serum samples spectrophotometrically. Here, amperometry using the rotating disk electrode on a single drop of solution is demonstrated to detect theophylline and phenytoin in the presence of PEOT. In the study, 2,6-dichloroindophenol (DCIP) added to the immunoassay mixture is reduced by the NADH to DCIPH2. Oxidation of DCIPH2 is monitored electrochemically at +200 mV using a glassy carbon rotating disk electrode. Slopes of amperograms are proportional to the concentration of drug in the immunoassay sample. This technique yields excellent quantitative data in the therapeutic range for both drugs in 2–20 % PEOT.  相似文献   

9.
Transition metal complexes (NiII, CoII, and CuII) with tetradentate N2S2-type ligands (L), which are reaction products of 2-thio-substituted benzaldehydes with aromatic amines (3-aminopyridine or 2-aminothiophenol), were synthesized for the first time. The complexes have the composition L·MX2 or L·2MX2 (X = Cl or ClO4). The electrochemical behavior of the ligands and complexes was studied by cyclic voltammetry and rotating disk electrode voltammetry. Depending on the structure of the complexes, the metal atom in the latter is initially reduced in a one-or two-electron process. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2115–2124, November, 2007.  相似文献   

10.
An amperometric glucose biosensor was developed using an anionic clay matrix of hydrotalcitic nature (Ni/Al-NO3 HT) as enzyme support, which was electrochemically synthesized at −0.90 V versus SCE, using a rotating disk Pt electrode to assure homogeneity of the electrodeposition suspension. The biorecognition element was glucose oxidase (GOx) immobilized on HT during the electrosynthesis, which was followed by cross-linking with glutaraldehyde vapours to avoid the enzyme release.The performances of the biosensor, in terms of sensitivity to glucose calculated from the slope of the calibration curve, are dependent on parameters related to the electrodeposition.An experimental design was applied to detect the optimal conditions of electrosynthesis in order to optimize the glucose biosensor performance. The factors taken into account were enzyme concentration and Ni/Al molar ratio. A full factorial design was performed to study linear interactions between factors and their quadratic effects and the optimal setup was evaluated by the isoresponse curves. The significant factors were enzyme concentration (linear and quadratic terms) and the interaction between enzyme concentration and Ni/Al molar ratio. Under the optimized electrodeposition conditions, the reproducibility of the biosensor fabrication was very good, being the RSD of the sensitivity about 5%.  相似文献   

11.
Compact loop bioreactors with a total volume of 4 l were equipped with electrically controllable valves and pumps, most of the currently available on-line sensors, direct digital control systems and a process minicomputer; complete automatic operation was thus achieved. These reactors perform excellently: the mixing time is <1 s, oxygen transfer is not a limiting factor and the precision of control of more than 10 process variables is much better than so far reported on other systems. Such high-performance bioreactors were used in investigating the stable synchronous oscillations of Saccharomyces-type yeasts and the reduction of slightly soluble organic compounds with biocatalysts. The inherent advantages of on-line measurement (and control) are discussed.  相似文献   

12.
《Electroanalysis》2005,17(4):289-297
Gold nanocrystal‐modified glassy carbon electrodes (nAu‐GCE) were prepared and used for the determination of histamine by flow injection and high performance liquid chromatography using pulsed amperometric detection (PAD) as the detection mode. Experimental variables involved in the electrodeposition process of gold from a HAuCl4 solution were optimized. A catalytic enhancement of the histamine voltammetric response was observed at the nAu‐GCE when compared with that obtained at a conventional Au disk electrode, as a consequence of the microdispersion of gold nanocrystals on the GC substrate. The morphological and electrochemical characteristics of the nAu‐GCE were evaluated by SEM and cyclic voltammetry. PAD using a very simple potential waveform consisting of an anodic potential (+700 mV for 500 ms) and a cathodic potential (?300 mV for 30 ms), was used to avoid the electrode surface fouling when histamine was detected under flowing conditions. Flow injection amperometric responses showed much higher Ip values and signal‐to‐noise ratios at the nAu‐GCE than at a conventional gold disk electrode. A limit of detection of 6×10?7 mol L?1 histamine was obtained. HPLC‐PAD at the nAu‐GCE was used for the determination of histamine in the presence of other biogenic amines and indole. Histamine was determined in sardine samples spiked at a 50 μg g?1 concentration level, with good results. Furthermore, the chromatographic PAD method was also used for monitoring the formation of histamine during the decomposition process of sardine samples.  相似文献   

13.
The use of a reagent containing copper (II), bicinchoninic acid (BCA) and tartrate buffered at pH 11.25 was studied voltammetrically, coulometrically, spectrophotometrically and chemically. The reagent exhibits three cathodic waves at rotating platinum disk and rotating glassy carbon electrodes. The two more-positive cathodic waves correspond to electrochemical reduction to copper (I)-bisbicinchoninate, Cu(BCA)23?. The third cathodic wave is caused by reduction to metallic copper. A reaction mechanism is proposed that shows the major chemical species in the solution and the electrochemical reaction products. Voltammetric and chemical studies indicate that the reagent should be used with care for protein assays because it is subject to multiple chemical interferences.  相似文献   

14.
An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N′-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy)2Cl (PIND-Ru, bpy = 2,2′-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy)2Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution.  相似文献   

15.
The impact of the Se/Ru/C catalyst loading on the oxygen reduction reaction (ORR) was studied using the rotating disk (RDE) and rotating ring-disk electrode (RRDE) techniques. The catalyst was deposited on a glassy carbon tip and the catalyst loading varied from 5 to 200 μg cm−2. Two catalysts with a different metal to carbon support ratios were studied. When the amount of the catalyst deposited on the electrode was decreased, a dramatic decrease in the ORR activity was found. Lowering the catalyst loading led, simultaneously, to a larger fraction of H2O2 released into the electrolyte. These observations suggest that the oxygen reduction to H2O on the Se/Ru/C electrocatalyst occurs through a H2O2 intermediate. When the amount of the catalyst on the disk increases, H2O2 is efficiently reduced to H2O before it can escape from the catalyst layer into the solution, or towards a membrane in a fuel cell.  相似文献   

16.
《Electroanalysis》2006,18(15):1485-1491
A novel cheap and simple amperometric biosensor, based on the immobilization of glucose oxidase (GOD) into anionic clay; layered double hydroxides (LDHs) [Zn3‐Al‐Cl] is presented. GOD can be entrapped in the LDHs gel via electrostatic interaction. Amperometric detection of glucose with an unmediated sensor at 0.6 V (vs. SCE) results in a rapid response (5 s), a wide linear range of 0.001–12 mM, as well as good operational stability. The low detection limit was 0.1 μM at 3σ. The apparent Michaelis‐Menten constant (K is 4.4 mM. The general interferences that coexisted in blood serum do not affect glucose determination, except for uric acid. In addition, optimization of the biosensor construction and the effects of the applied potential on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

17.
Z Ou  A Lü  D Meng  S Huang  Y Fang  G Lu  KM Kadish 《Inorganic chemistry》2012,51(16):8890-8896
Five meso-substituted cobalt(III) corroles were examined as to their catalytic activity for the electoreduction of O(2) when coated on an edge-plane pyrolytic graphite electrode in 1.0 M HClO(4). The investigated compounds are represented as (TpRPCor)Co(PPh(3)), where TpRPCor is the trianion of a para-substituted triphenylcorrole and R = OMe, Me, H, F, or Cl. Three electrochemical techniques, cyclic voltammetry, linear sweep voltammetry with a rotating disk electrode (RDE), and voltammetry at a rotating ring disk electrode (RRDE), were utilized to evaluate the catalytic activity of the corroles in the reduction of O(2). Cobalt corroles containing electron-withdrawing substituents were shown to be better catalysts than those having electron-donating groups on the three meso-phenyl rings of the triarylcorroles.  相似文献   

18.
Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.  相似文献   

19.
Microdrop analysis of a bead-based immunoassay   总被引:1,自引:0,他引:1  
The progress to electrochemical detection of a microbead-based immunoassay in small volumes has led to a reduced assay time and lower detection limits. Three electrochemical techniques are described for an immunoassay with detection in a microdrop. The techniques are amperometric detection with a rotating disk electrode (RDE), a microelectrode, and an interdigitated array (IDA) electrode. An enzyme-labeled sandwich immunoassay with mouse IgG as the model analyte is used to demonstrate the three techniques. The microbead assay is carried out in a test tube using a magnet to control bead collection. Once the immunocomplex is formed on the microbead, the beads are transferred to a microdrop where the enzyme, either alkaline phosphatase or β-galactosidase, generates 4-aminophenol (PAP). PAP is oxidized at the electrode with an applied potential of +290 mV vs. Ag/AgCl. For all three techniques, the upper limit of the dynamic range was 1000 ng/ml mouse IgG, and the detection limits were: 50 ng/ml for the RDE, 40 ng/ml for the microelectrode, and 26 ng/ml for the IDA electrode.  相似文献   

20.
Oxygen utilization in electrochemical energy generation systems requires to overcome the slow kinetics of oxygen reduction reaction (ORR). Herein, we have outstretched an efficient strategy in order for developing a bioinspired Zn (N4)/sulfur/graphitic carbon composite (Zn‐S‐Gc) with an effective performance for the ORR at low temperature. The catalyst composite was created by attaching the Zn (N4) centers in the form of zinc phthalocyanine on the sulfur‐linked graphitic carbon surface. The most positive ORR onset potential of about 1.00 V versus a reversible hydrogen electrode (RHE) was obtained due to the unique structure of a new catalyst in KOH solution (pH = 13) at low temperature (T = 298 K). The catalyst was evaluated using the rotating‐disk electrode method in the potential range of ?0.02–1.18 V versus RHE. The number of transferred electrons as one of the most important parameters (n > 3.70) is almost constant in a wide range of low overpotentials (0.1–0.6 V), which indicates a more efficient four‐electron pathway from O2 to H2O on the catalyst surface. The estimated Tafel slope in an appropriate range is about ≈ ?133.3 mV/dec at a low current density and E1/2 of the electrocatalyst displays a negative shift of only 11 mV after 10,000 cycles. The mean size of the catalyst centers is on the nanoscale (<50 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号