首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Páscoa RN  Tóth IV  Rangel AO 《Talanta》2011,84(5):1267-1272
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0 m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L−1, for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L−1 with a high throughput (43 h−1) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples.  相似文献   

2.
A multi-syringe flow injection system for the potentiometric determination of exchangeable potassium in soil samples is proposed. Firstly, a manifold was devised to allow determination in soil extracts prepared off-line. It was possible to analyze samples prepared in extractants with different composition (Mehlich or Morgan) without physical or chemical modification of the manifold. A linear dynamic concentration range of 6–391 mg L− 1 was obtained, allowing the direct introduction of soil extract without dilution. A determination frequency of 50 h− 1 was achieved, with good repeatability for 10 consecutive injections of soil extracts (RSD < 3.0%). The in-line preparation of soil extract was implemented by automatic addition of extractant solution to a previously weighed portion of soil, followed by in-line filtration. Good repeatability was attained as the variance of the extraction procedure was not significantly different from the variance obtained in consecutive measurements of the same extract. Furthermore, results comparable to those obtained by off-line extraction and determination by flame emission spectrometry were attained for the two soil samples tested. Using this procedure, a determination frequency of 13 h− 1 and a sampling rate of 4 h− 1 were achieved.  相似文献   

3.
Flow injection analysis (FIA) procedures for the Spectrophotometric determination of phenol involving in-line concentration by solvent and sorbent extraction have been developed. The imine product formed in the reaction between phenol and 4-aminoantipyrine (4-AAP) is either extracted into chloroform (solvent extraction) or is temporarily retained on C18-modified silica material contained in a microcolumn (sorbent extraction). In the latter case two variants of detection have been used namely the Spectrophotometric measurement of the methanolic eluent containing the concentrated dye and at-column optosensing of the retained reaction product followed by methanol elution to maintain reversibility of the process. In the solvent extraction procedure a 10-fold increase of sensitivity compared to the common FIA method without extraction is achieved but no corresponding improvement in detectability is observed. Under optimized conditions the detection limit amounts to 8 μg l−1. Using sorbent extraction methodology, high concentration factors can be obtained when large sample volumes are used. The only limitation in getting correspondingly lower detection limits are an increasingly high and variable blank value with sampling volume. The detection limits obtained for measurement of the absorbance in the eluent and on-column optosensing are 11 μg l−1 and 0.4 μg l−1, respectively. A study of the extractability of various phenol derivates using both solvent and sorbent extraction revealed lower relative response rates compared to the FIA method without extraction. Phenolics that possess an additional acidic group are present in ionized form at the high pH of the assay and are not extractable at all.  相似文献   

4.
Three flow injection (FI) systems were investigated for the determination of trace iron in beer: an FI-in-valve column-flame atomic absorption spectrophotometry (FI-FAAS) system, a spectrophotometric FI system with a column placed at the detection point, and an FI-spectrophotometric system with bead injection (FI-BI). Cationic exchange resin Dowex 50W X8 and iminodiacetate chelating resin, Chelex-100, were employed for the FI-spectrophotometric and FI-FAAS systems, respectively. The FI-in-valve column, packed with the resin, enhances the FAAS performance. The spectrophotometric FI system with a column (packed with Chelex-100) placed at the detection point (in a cell holder of a spectrophotometer) is based on the formation of iron (II)–1,10-phenanthroline complex sorbed onto the resin. No eluent has been found to be suitable. The FI-BI for renewable microcolumn has been proven to be an alternative. The FI-FAAS and FI-BI procedures provide online sample preseparation and preconcentration for the determination of iron in beer. Both are simple, rapid, and economical. The procedures also involve sample preparation (decarbonation and suppression of tannin interference by adding ascorbic acid) and standard addition. The results obtained by FI-FAAS and FI-BI agree with those of AOAC spectrophotometric method.  相似文献   

5.
Ruengsitagoon W 《Talanta》2008,74(5):1236-1241
A simple reversed flow injection colourimetric procedure for determining iron(III) was proposed. It is based on the reaction between iron(III) with chlortetracycline, resulting in an intense yellow complex with a suitable absorption at 435 nm. A 200 μl chlortetracycline reagent solution was injected into the phosphate buffer stream (flow rate 2.0 ml min−1) which was then merged with iron(III) standard or sample in dilute nitric acid stream (flow rate 1.5 ml min−1). Optimum conditions for determining iron(III) were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 0.5–20.0 μg ml−1. The detection limit (3σ) and the quantification limit (10σ) were 0.10 and 0.82 μg ml−1, respectively. The relatives standard deviation of the proposed method calculated from 12 replicate injections of 2.0 and 10.0 μg ml−1 iron(III) were 0.43 and 0.59%, respectively. The sample throughput was 60 h−1. The proposed method has been satisfactorily applied to the determination of iron(III) in natural waters.  相似文献   

6.
Kass M  Ivaska A 《Talanta》2002,58(6):1131-1137
A procedure for determination of concentrations of iron(III) and total iron by sequential injection analysis is described. The method is based on the strong blue-colored complexes formed between iron(III) and tiron. The absorbance of the complexes is measured spectrophotometrically at 635 nm. Oxidation of iron(II) and masking of interfering fluoride is simultaneously done by injecting one zone of hydrogen peroxide and one of thorium(IV) between the sample and reagent zones. Concentration of iron(III) and total iron, in the range 0.002–0.026 M, in diluted samples from a pickle bath were determined. The relative standard deviation was 0.4% (n=7). The method was also used in a pilot plant of a zinc process for determination of iron(III) in the range 0.2–3.0 g l−1. The sample throughput is approximately 17 samples per hour, including three repetitive determinations of each sample.  相似文献   

7.
Meneses SR  Maniasso N  Zagatto EA 《Talanta》2005,65(5):1313-1317
A flow-injection procedure for spectrophotometric determination of sulphate in soil solutions is proposed. Samples are directly soaked from the soils under field conditions, in-line filtered through ceramic plates, and preserved with thymol. The method involves reaction with barium dimethylsulphonazo(III) (DMSA) in the presence of dimethylsulphoxide (DMSO) with further measuring the decrease in absorbance at 668 nm. A linear response is observed up to about 5 mgl −1 SO4, and detection limit (3σ criterion) is 0.1 mg l−1 SO4. Only 4.5 μg DMSA is consumed per determination. The system is rugged and baseline drift is not observed during extended operation periods. About 60 samples are injected per hour, and the results are precise (r.s.d. <2%) and in agreement with ion chromatography.  相似文献   

8.
Lunvongsa S  Oshima M  Motomizu S 《Talanta》2006,68(3):969-973
A flow injection spectrophotometric method has been developed for the determination of dissolved and total amounts of iron in tap and natural water samples. The method for the determination of iron employs a sample acidification step in order to decompose iron hydroxide and iron-complexes into free iron, Fe(III) and Fe(II). The amounts of free iron were detected using a catalytic action of Fe(III) and Fe(II) on the oxidation of N,N-dimethyl-p-phenylenediamine in the presence of hydrogen peroxide. Increase in absorbance of oxidized product was detected spectrophotometrically at 514 nm. The proposed method allows 0.02 and 0.06 μg l−1 of LOD and LOQ, respectively, with relative standard deviation (RSD) below 2%. The accuracy and the precision of the method were evaluated by the analysis of the standard reference material, river water. The developed method was successfully applied to real water samples.  相似文献   

9.
A new rapid flow injection procedure for the simultaneous determination of nitrate, nitrite and ammonium in single flow injection analysis system is proposed. The procedure combines on-line reduction of nitrate to nitrite and oxidation of ammonium to nitrite with spectrophotometric detection of nitrite by using the Griess-llosvay reaction. The formed azo dye was measured at 543 nm. The influence of reagent concentration and manifold parameters were studied. Nitrite, nitrate and ammonium can be determined within the range of 0.02–1.60 μg mL−1, 0.02–1.60 μg mL−1 and 0.05–1.40 μg mL−1, respectively. R.S.D. values (n = 10) were 2.66; 1.41 and 3.58 for nitrate, nitrite and ammonium, respectively. This procedure allows the determination and speciation of inorganic nitrogen species in soils with a single injection in a simple way, and high sampling rate (18 h−1). Detection limits of 0.013, 0.046 and 0.047 μg mL−1were achieved for nitrate, nitrite and ammonium, respectively. In comparison with others methods, the proposed one is more simple, it uses as single chromogenic reagent less injection volume (250 mL in stead of 350 mL) and it has a higher sampling rate.  相似文献   

10.
11.
A new flow injection procedure for an assay of Fe(III) by using salicylate obtained from antipyretic powder, which is a cheap and easily available reagent, is proposed. A red complex was continuously monitored by a laboratory-made green LED colorimeter. A linear calibration was obtained in the range of 1–20 mg Fe l−1 with a detection limit of 0.5 mg Fe l−1 and R.S.D.s of 1.4–5.4% (n=3, for 1–20 mg Fe l−1). The new procedure was applied to assay iron contents in pharmaceutical preparations. The results were in good agreement with those of the USP standard method.  相似文献   

12.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

13.
Carrilho EN  Krug FJ  Zagatto EA 《Talanta》1995,42(12):2021-2026
Iron interference in the spectrophotometric catalytic determination of molybdenum based on the iodide-hydrogen peroxide reaction can be corrected by using sulphosalicylic acid as masking and color-forming reagent. The catalytic influence of iron ions is circumvented to the extent of about 90% and correction of any remaining iron ions is possible by monitoring the colored iron(III)-salicylate complex at 490 nm. In this way, iron is also determined. With the proposed system, molybdenum can be determined in plant and food digests within the 0–100 μg Mo 1−1 range in the presence of up to 25 mg Fe 1−1, at a sampling rate of about 50 determinations h−1. The relative standard deviation of 10 consecutive measurements was estimated as < 2%. Results for samples were comparable with those obtained by graphite furnace atomic absorption spectrometry. In addition, recoveries within the range 94–100% were calculated.  相似文献   

14.
Guava leaf extract is utilized as an alternative natural reagent for quantification of iron. The flow injection technique enables the use of the extract in acetate buffer solution without the need of further purification. Some properties of the extract such as its stability and ability to form a colored complex with iron were studied. The proposed system is an environmentally friendly method for determination of iron with less toxic chemical wastes.  相似文献   

15.
This work describes the first flow injection (FI) method for the spectrophotometric determination of the anti-hypertension drug fosinopril (FSP), a phosphorus-containing compound. The method is based on the UV-assisted digestion of the analyte using ammonium peroxodisulfate as the oxidizing reagent. The yielded orthophosphate ions are determined by a rapid and robust FI method employing the molybdenum blue approach. The time needed for complete conversion of a maximum FSP amount concentration of 2.0×10−4 mol l−1 was 30 min. Based on the capability of the home-made UV digester used in this work to process eight samples simultaneously, an acceptable samples analysis frequency of 16 h−1 was achieved. Additionally, a very important advantage of the proposed method is that an orthophosphate ions calibration graph can be used instead of FSP, as 100% conversion of FSP was achieved. Quantitative measurements of FSP were made in the range 1.0×10−6 to 2.0×10−4 mol l−1. The application of the developed FI method to the analysis of two commercially available pharmaceutical formulations produced accurate results, as the relative errors were <1.5% in both cases, compared to the labeled values.  相似文献   

16.
基于苯胺与亚硝酸盐的重氮化反应及反应产物与甲萘酚的显色,借助流动分析技术,实现了海水中苯胺含量的分析测定。体系以30.9g/L的NaCl做载液、人工海水配制标准样品,对各个影响因素进行了优化。苯胺浓度在0.01~1.0mg/L范围内与相对峰高呈线性关系,线性方程ΔH(mV)=200.53ρ+1.0728(n=8,ρ为苯胺浓度mg/L),相关系数R2=0.9982。方法的检出限(3σ)为0.005mg/L,相对标准偏差(RSD)为4.8%(n=11)。考察了共存离子、不同盐度样品对分析测定的影响。用于实际海水样品的分析,回收率为95.8%~106.6%。  相似文献   

17.
van Staden JK  Tsanwani MM 《Talanta》2002,58(6):1103-1108
A simple and reliable sequential injection analysis (SIA) system is described for the determination of boron as boric acid in eye lotions. This method is based on the complexation reaction between d-sorbitol and boric acid followed by the acid-base reaction with methyl orange (MO). The colour change reaction is monitored at 520 nm. The system is able to monitor boron at a frequency of 30 samples per h with a relative standard deviation of less than 0.6%. The calibration graph is linear up to 12-mg l(-1). The system has a detection limit of 0.06-mg l(-1). No significant differences (at 95% probability level) were found between the proposed SIA method and the reference method.  相似文献   

18.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

19.
A new rapid and sensitive FI method is reported for spectrophotometric determination of trace chromium(VI) in electroplating waste water. The method is based on the reaction of Cr(VI) with sodium diphenylamine sulfonate (DPH) in acidic medium to form a purple complex (lambda(max) = 550 nm). Under the optimized conditions, the calibration curve is linear in the range 0.04-3.8 microg ml(-1) at a sampling rate of 30 h(-1). The detection limit of the method is 0.0217 microg ml(-1), and the relative standard deviation is 1.1% for eight determinations of 2 microg ml(-1) Cr(VI). The proposed method was applied to the determination of chromium in electroplating waste water with satisfactory results.  相似文献   

20.
A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl + 0.0125 M H2SO4) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L−1 PO4-P, with a detection limit of 0.02 mg L−1. Relative standard for 11 replicate injections of 5 mg L−1 PO4-P was 0.5%. A sample through put of 35 h−1 was achieved, with consumption of 14 mg KCl, 10 mg ammonium molybdate and 0.05 mL H2SO4 per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号