首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(10):873-879
A highly sensitive and fast responding sensor for the determination of morphine is described. The multiwall carbon nanotubes immobilize on preheated glassy carbon electrode (5 min at 50 °C) by gently rubbing of electrode surface on a filter paper supporting the carbon nanotubes.The results indicated that carbon nanotubes(CNTs) modified glassy carbon electrode exhibited efficiently electrocatalytic oxidation for morphine with relatively high sensitivity, stability and long life. Under conditions of cyclic voltammetry, the potential for oxidation of morphine is lowered by approximately 100 mV and the current is enhanced significantly (10 times) in comparison to the bare glassy carbon electrode at wide pH range (2–9). The electrocatalytic behavior is further exploited as a sensitive detection scheme for morphine determination by hydrodynamic amperometry. Under the optimized conditions the calibration plots are linear in the concentration range 0.5–150 μM with the calculated detection limit (S/N=3) of 0.2 μM and sensitivity of 10 nA/μM and a relative standard deviation (RSD) of 2.5% (n=10). The amperometric response is extremely stable, with no loss in sensitivity over a continual 30 min operation. Such attractive ability of multiwall carbon nanotubes (MWCNTs) modified GC electrode, suggests great promise for a morphine amperometric sensor. Finally the ability of the modified electrode was evaluated for simultaneous determination of morphine and codeine.  相似文献   

2.
Rajesh N. Hegde 《Talanta》2009,79(2):361-368
A simple and rapid electrochemical method was developed for the determination of trace-level trazodone, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNT-modified glassy carbon electrode was constructed and the electrochemical behavior of trazodone was investigated in detail. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of trazodone in neutral solutions. It leads to a considerable improvement of the anodic peak current for trazodone, and allows the development of a highly sensitive voltammetric sensor for the determination of trazodone. Trazodone could effectively accumulate at this electrode and produce two anodic peaks at about 0.73 V and 1.00 V. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the trazodone determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 0.2-10 μM and 24 nM, respectively for trazodone. The proposed method was successfully applied to trazodone determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for detection of analyte in urine as a real sample.  相似文献   

3.
The toluidine blue O (TBO) functionalized multiwall carbon nanotubes (MWNTs) nanomaterials (TBO-MWNTs) were prepared by assembling TBO onto the surface of a MWNTs modified glassy carbon (GC) electrode. Also TBO-MWNTs modified GC electrodes exhibiting a strong and stable electrocatalytic response toward beta-nicotinamide adenine dinucleotide (NADH) were described. Compared with a bare GC electrode, the TBO-MWNTs modified GC electrodes could decrease the oxidization overpotential of NADH by 730 mV, with a peak current at 0.0 V, since there was a positively synergistic electrocatalytic effect between the MWNTs and TBO toward NADH. Furthermore, the TBO-MWNTs modified GC electrodes had perfect performances, such as a low detection limit (down to 0.5 microM), being very stable (the current diminutions is lower than 6% in a period over 35 min), a fast response (within 3 s), and a wide linear range (from 2.0 microM to 3.5 mM). Such an ability of TBO-MWNTs to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.  相似文献   

4.
A bilayer surface coating, prepared by electrodepositing ruthenium oxide (RuOx) onto a carbon nanotube (CNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric and amperometric measurements of insulin compared to the individual (CNT or RuOx) coated electrodes. The enhanced electrocatalytic activity towards insulin is indicated from lowering the potential of the oxidation process (starting around 0.35 versus Ag/AgCl) and the substantially higher sensitivity over the entire potential range. A wide linear dynamic range (10-800 nM) was achieved with a detection limit of 1 nM. The marked electrocatalytic activity of the RuOx/CNT coating towards insulin is coupled with a greatly enhanced stability. For example, the insulin amperometric response of the RuOx/CNT-coated electrodes is highly stable, with 97% of the initial activity remaining after 60 min stirring of 2 × 10−6 M solution (compared to significantly faster current diminutions at the RuOx- or CNT-coated surfaces). The results suggest great promise for miniaturized sensors and detectors for monitoring insulin.  相似文献   

5.
The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples.  相似文献   

6.
We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT–Polyhis was obtained by sonicating for 30 min 1.0 mg mL−1 MWCNTs in 0.25 mg mL−1 Polyhis solution prepared in 75:25 (v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The dispersion was characterized by scanning electron microscopy, and by cyclic voltammetry and amperometry using ascorbic acid as redox marker. The modification of glassy carbon electrodes with MWCNT–Polyhis produces a drastic decrease in the overvoltage for the oxidation of ascorbic acid (580 mV) at variance with the response observed at glassy carbon electrodes modified just with Polyhis, where the charge transfer is more difficult due to the blocking effect of the polymer. The reproducibility for the sensitivities obtained after 10 successive calibration plots using the same surface was 6.3%. The MWCNT-modified glassy carbon electrode demonstrated to be highly stable since after 45 days storage at room temperature the response was 94.0% of the original. The glassy carbon electrode modified with MWCNT–Polyhis dispersion was successfully used to quantify dopamine or uric acid at nanomolar levels, even in the presence of large excess of ascorbic acid. Determinations of uric acid in human blood serum samples demonstrated a very good correlation with the value reported by Wienner laboratory.  相似文献   

7.
An amperometric biosensor for sensitive and selective detection of glucose has been constructed by using highly dispersed Pt nanoparticles supported on carbon nanotubes (Pt-MWCNTs) as sensing interface. The Pt-MWCNTs were synthesized by using the two-step pyrolysis method. This composite shows good electrocatalytic activity towards the oxidation of glucose in alkaline and thus can be used to selectively detect glucose. We found that detection potential and Nafion amount covered on the Pt-MWCNTs modified glassy carbon electrode had considerable influence on the selectivity for amperometric detection of glucose. Under optimal detection conditions (detection potential of 0.0 V versus SCE and 10 μL 1.5% Nafion), selective detection of glucose in the glucose concentration range of 1.0-26.5 mM (correlation coefficient, >0.999) can be performed. The results demonstrate that the Pt-MWCNTs composite is promising for the fabrication of nonenzymatic glucose sensors.  相似文献   

8.
Buratti S  Brunetti B  Mannino S 《Talanta》2008,76(2):454-457
A glassy carbon electrode coated with cobalt oxide/multi-wall carbon nanotubes (MWCNT) system was used for the detection of carbohydrates and thiols. The modification of the glassy carbon electrode increased the anodic current response of these organic compounds and decreased their overvoltage. The amperometric responses were extremely stable with no loss of sensitivity over many days of storage. Such attractive performance characteristics indicate great promise for using this new catalytic system for monitoring in fast and simple way compounds of great interest for food industry, biotechnology and clinical diagnostics.  相似文献   

9.
A polyaniline (PANI)/carbon nanotubes (CNTs) composite modified electrode was fabricated by galvanostatic electropolymerization of aniline on multi-walled carbon nanotubes (MWNTs)-modified gold electrode. The electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite and facilitates the detection of nitrite at an applied potential of 0.0 V. Although the amperometric responses toward nitrite at MWNTs/gold and PANI/gold electrodes have also been observed in the experiments, these responses are far less than that obtained at PANI/MWNTs/gold electrode. The effects of electropolymerization time, MWNTs concentration and pH value of the detection solution on the current response of the composite modified electrode toward sodium nitrite, were investigated and discussed. A linear range from 5.0 × 10−6 to 1.5 × 10−2 M for the detection of sodium nitrite has been observed at the PANI/MWNTs modified electrode with a sensitivity of 719.2 mA M−1 cm−2 and a detection limit of 1.0 μM based on a signal-to-noise ratio of 3.  相似文献   

10.
The electrochemical behaviour of glassy carbon electrodes coated with multiwalled carbon nanotubes (MWCNT) from three different sources and with different loadings has been compared, with a view to sensor applications. Additionally, poly(neutral red) (PNR) was electrosynthesised by potential cycling on bare glassy carbon and on MWCNT-modified glassy carbon electrodes, and characterised by cyclic voltammetry and scanning electron microscopy. Well-defined voltammetric responses were observed for hexacyanoferrate (II) oxidation with differences between the MWCNT types as well as from loading. The MWCNT and PNR/MWCNT-modified electrodes were applied to the oxidative determination of ascorbate, the electrocatalytic effects observed varying according to the type of nanotubes. Comparison was made with electrodes surface-modified by graphite powder. All modified electrode configurations with and without PNR were successfully employed for ascorbate oxidation at +0.05 V vs saturated calomel electrode with detection limits down to 4 μM; good operational stability and storage stability were also obtained.  相似文献   

11.
This work reports the advantages of using glassy carbon electrodes (GCEs) modified with multi-wall carbon nanotubes (CNT) dispersed in polyethylenimine (PEI) as detectors in flow injection and capillary electrophoresis. The presence of the dispersion of CNT in PEI at the electrode surface allows the highly sensitive and reproducible determination of hydrogen peroxide, different neurotransmitters (dopamine (D) and its metabolite dopac, epinephrine (E), norepinephrine (NE)), phenolic compounds (phenol (P), 3-chlorophenol (3-CP) and 2,3-dichlorophenol (2,3CP)) and herbicides (amitrol). Sensitivities enhancements of 150 and 140 folds compared to GCE were observed for hydrogen peroxide and amitrol, respectively. One of the most remarkable properties of the resulting electrode is the antifouling effect of the CNT/PEI layer. No passivation was observed either for successive additions (30) or continuous flow (for 30 min) of the compounds under investigation, even dopac or phenol. A critical comparison of the amperometric and voltammetric signal of these different analytes at bare- and PEI-modified glassy carbon electrodes and pyrolytic graphite electrodes is also included, demonstrating that the superior performance of CNT is mainly due to their unique electrochemical properties. Glassy carbon electrodes modified with CNT-PEI dispersion also show an excellent performance as amperometric detector in the electrophoretic separation of phenolic compounds and neurotransmitters making possible highly sensitive and reproducible determinations.  相似文献   

12.
Boron-doped carbon nanotubes (BCNTs) as a novel carbon nanomaterial have higher catalytic activity. Electroanalysis of dihydronicotinamide adenine dinucleotide (NADH) based on the BCNTs modified electrode has been investigated. Comparing with the bare glassy carbon (GC) and carbon nanotubes (CNTs)/GC electrodes, the BCNTs/GC electrode allowed highly sensitive amperometric detection of NADH at the lower applied potential, and minimization of surface contamination. Therefore, BCNTs are useful and promising material for the detection of NADH and are attractive for dehydrogenase-based amperometric biosensor or other analytical applications.  相似文献   

13.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

14.
Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.  相似文献   

15.
Salimi A  Hallaj R  Ghadermazi M 《Talanta》2005,65(4):888-894
The carbon ceramic electrode prepared with sol-gel technique is modified by a thin film of chlorogenic acid (CGA). By immersing the carbon ceramic electrode in aqueous solution of chlorogenic acid at less than 2 s a thin film of chlorogenic acid adsorbed strongly and irreversibly on the surface of electrode. The cyclic voltammetry of the resulting modified CCE prepared at optimum conditions shows a well-defined stable reversible redox couple due to hydroquinone/quinone system in both acidic and basic solutions. The modified electrode showed excellent electrocatalytic activity toward NADH oxidation and it also showed a high analytical performance for amperometric detection of NADH. The catalytic rate constant of the modified carbon ceramic electrode for the oxidation of NADH is determined by cyclic voltammetry measurement. Under the optimised conditions the calibration curve is linear in the concentration range 1-120 μm. The detection limit (S/N = 3) and sensitivity are 0.2 μM and 25 nA μM−1.The results of six successive measurement-regeneration cycles show relative standard deviations of 2.5% for electrolyte solution containing 1 mM NADH, indicating that the electrode renewal gives a good reproducible and antifouling surface. The advantages of this amperometric detector are: high sensitivity, excellent catalytic activity, short response time t < 2 s, remarkable long-term stability, simplicity of preparation at short time and good reproducibility.  相似文献   

16.
We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N?=?3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications.
Figure
Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step. Due to the novel properties of silicotungstic acid and carbon nanotubes doped in the polyaniline film, this sensor showed excellent analytical performance for the amperometric determination of ascorbic acid at a low potential.  相似文献   

17.
Jiang Y  Zhang X  Shan C  Hua S  Zhang Q  Bai X  Dan L  Niu L 《Talanta》2011,85(1):76-81
Prussian blue (PB) was grown compactly on graphene matrix by electrochemical deposition. The as-prepared PB-graphene modified glassy carbon electrode (PB-graphene/GCE) showed excellent electrocatalytic activity towards both the reduction of hydrogen peroxide and the oxidation of hydrazine, which could be attributed to the remarkable synergistic effect of graphene and PB. The PB-graphene/GCE showed sensitive response to H2O2 with a wide linear range of 10-1440 μM at 0.0 V, and to hydrazine with a wide linear range of 10-3000 μM at 0.35 V. The detection limit was 3 μM and 7 μM, respectively, and both of them had rapid response within 5 s to reach 95% steady state response. The wide linear range, good selectivity and long-time stability of the PB-graphene/GCE make it possible for the practical amperometric detection of hydrogen peroxide and hydrazine.  相似文献   

18.
D. Vega  J.M. Pingarrón 《Talanta》2007,71(3):1031-1038
The use of a carbon nanotube-modified glassy carbon electrode (CNT-GCE) for the LC-EC detection of phenolic compounds with estrogenic activity is reported. Cyclic voltammograms for phenolic endocrine disruptors and estrogenic hormones showed, in general, an enhancement of their electrochemical oxidation responses at CNT-GCE attributable to the electrocatalytic effect caused by CNTs. Hydrodynamic voltammograms obtained under flow injection conditions lead to the selection of +700 mV as the potential value to be applied for the amperometric detection of the phenolic estrogenic compounds, this value being remarkably less positive than those reported in the literature using other electrode materials. Successive injections of these compounds demonstrated that no electrode surface fouling occurred. A mobile phase consisting of a 50:50 (v/v) acetonitrile:0.05 mol l−1 phosphate buffer of pH 7.0 was selected for the chromatographic separation of mixtures of these compounds, with detection limits ranging between 98 and 340 nmol l−1. Good recoveries were obtained in the analysis of underground well water and tap water samples spiked with some phenolic estrogenic compounds at a 14 nmol l−1 concentration level.  相似文献   

19.
Salimi A  Miranzadeh L  Hallaj R 《Talanta》2008,75(1):147-156
A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with carbon nanotubes (CNTs) and catechol compounds. First, 25 microL of DMSO-CNTs solutions (0.4 mg/mL) was cast on the surface of GC electrode and dried in air to form a CNTs film. Then the GC/CNTs modified electrode immersed into a chlorogenic acid, catechine hydrate and caffeic acid solution (electroless deposition) for a short period of time (2-80s). The cyclic voltammogram of the modified electrode in aqueous solution shows a pair of well-defined, stable and nearly reversible redox couple (quinone/hydroquinone) with surface confined characteristics. The combination of unique electronic and electrocatalytic properties of CNTs and catechol compounds results in a remarkable synergistic augmentation on the response. The electrochemical reversibility and stability of modified electrode prepared with incorporation of catechol compound into CNTs film was evaluated and compared with usual methods for attachment of catechols to electrode surfaces. The transfer coefficient (alpha), heterogeneous electron transfer rate constants (k(s)) and surface concentrations (Gamma) for GC/CNTs/catechol compound modified electrodes were calculated through the cyclic voltammetry technique. The modified electrodes showed excellent catalytic activity, fast response time and high sensitivity toward oxidation of hydrazine in phosphate buffer solutions at pH range 4-8. The modified electrode retains its initial response for at least 2 months if stored in dry ambient condition. The properties of modified electrodes as an amperometric sensor for micromolar or lower concentration detection of hydrazine have been characterized.  相似文献   

20.
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity = (0.28 ± 0.02) μA mM−1, r = 0.997), fast (4 s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700 V with detection and quantification limits of 0.035 and 0.107 mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号