首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 16 毫秒
1.
The synchrotron radiation (SR) emitted by circulating high-energy electrons has extraordinary properties: The light is intensive and bright, it is tunable and highly collimated, and finally, it is linearly polarized. These exceptional properties have initiated a unique revival of many spectroscopies using electromagnetic radiation. The techniques of special concern for materials analysis which are treated in this article are: X-ray absorption, reflection, fluorescence, diffraction and topography. A number of examples will be given in order to illustrate the possibilities of these techniques when SR is used.On leave of absence from Institut für Festkörperforschung, KFA Jülich, D-5170 Jülich, Federal Republic of Germany  相似文献   

2.
Micro-X-ray diffraction using synchrotron radiation has been developed in recent years as a tool for the local analysis of bulk polymer and biopolymer samples. Developments in X-ray optics associated with the introduction of third generation synchrotron radiation sources now allow routine experiments at the 1 μm scale. Several experiments at the 100 nm scale have also been reported with future developments aiming for the 50 nm scale and smaller. In this review, the current state of experimental possibilities have been summarised with an emphasis on in-situ fiber scanning and deformation studies. Examples of unconventional in-situ studies such as microhardness testing or hydration by inkjet printing systems demonstrate the largely unexplored potential of micro-X-ray diffraction techniques.  相似文献   

3.
The total reflection X-ray fluorescence using synchrotron radiation (SRTXRF) has become a competitive technique for the determination of trace elements in samples that the concentrations are lower than 100 ng ml−1. In this work, thirty-seven mineral waters commonly available in supermarkets of Rio de Janeiro, Brazil, were analyzed by SRTXRF. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo, using a polychromatic beam with maximum energy of 20 keV for the excitation. Standard solutions with gallium as internal standard were prepared for calibration of the system. Mineral water samples of 10 μl were added to Perspex sample carrier, dried under infrared lamp and analyzed for 200 s measuring time. It was possible to determine the concentrations of the following elements: Si, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, Ge, Rb, Sr, Ba and Pb. The elemental concentration values were compared with the limits established by the Brazilian legislation.  相似文献   

4.
Subsurface deformation behavior of a polymeric material is studied through the digital volume correlation (DVC) technique. Fundamental principles of the DVC technique are presented and the supplemental state-of-the-art algorithmic schemes to improve the efficiency and accuracy of the DVC analysis are also introduced. Tensile tests on an epoxy material are performed in conjunction with synchrotron radiation tomography. In order to create randomly distributed grayscale values in the tomograms for the following image analysis, microscale high-density particles are embedded when the epoxy specimens are fabricated. 3D tomographic images taken at multiple loading steps are utilized for the DVC analysis. The performance of the present DVC analysis is evaluated with the experimental data.  相似文献   

5.
Microstructures constructed from SU-8 polymer and produced on CaF2 base plates have been developed for microchip-based analysis systems used to perform FTIR spectroscopic detection using mid-IR synchrotron radiation. The high brilliance of the synchrotron source enables measurements at spot sizes at the diffraction limit of mid-IR radiation. This corresponds to a spatial resolution of a few micrometers (5–20 m). These small measurement spots are useful for lab-on-a-chip devices, since their sizes are comparable to those of the structures usually used in these devices. Two different types of microchips are introduced here. The first chip was designed for time-resolved FTIR investigations of chemical reactions in solution. The second chip was designed for chip-based electrophoresis with IR detection on-chip. The results obtained prove the operational functionality of these chips, and indicate the potential of these new devices for further applications in (bio)analytical chemistry.  相似文献   

6.
Transition rates were obtained from spectra for pure metallic samples of atomic number ranging from 22 to 27, measured with monochromatic incident X-ray beams from a synchrotron source. The experimental setup for this consisted of an energy dispersive spectrometer in a conventional 45–45° geometry, mounted in an evacuated chamber. Absorption, detector efficiency and multiple scattering were taken into account. The results obtained are compared with recent theoretical and experimental data as well as with the well-known theoretical predictions from Scofield.  相似文献   

7.
It is known that trace elements play an important role in a number of biological processes. These include the activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions and modifications in the permeability of cellular membranes. These elements may also influence carcinogenic processes, thus the knowledge of trace element concentrations in healthy and neoplastic tissues might help in diagnostic and in the etiology and development of cancer.  相似文献   

8.
Current latent print and trace evidence collecting technologies are usually invasive and can be destructive to the original deposits. We describe a non-invasive vibrational spectroscopic approach that yields latent fingerprints that are overlaid on top of one another or that may contain trace evidence that needs to be distinguished from the print. Because of the variation in the chemical composition distribution within the fingerprint, we demonstrate that linear unmixing applied to the spectral content of the data can be used to provide images that reveal superimposed fingerprints. In addition, we demonstrate that the chemical composition of the trace evidence located in the region of the print can potentially be identified by its infrared spectrum. Thus, trace evidence found at a crime scene that previously could not be directly related to an individual, now has the potential to be directly related by its presence in the individual-identifying fingerprints. A portion of this work was presented at the 16th Meeting of the International Association of Forensic Sciences, Montpellier, France September 2–7, 2002.  相似文献   

9.
物证分析对于案件侦破及法庭诉讼均具有重要作用.新兴质谱技术因其直接、快速、灵敏和无损等特点在物证分析中得到广泛应用.本文综述了国内外几种新兴质谱技术在检测爆炸物、违禁药物、潜指纹及真伪文件笔迹等物证中的应用研究实例,并展望了质谱新技术在物证分析方面的发展前景.  相似文献   

10.
环境中的微/纳米塑料污染引起了人们极大关注。土壤中的微/纳米塑料不可避免对植物产生影响,因此预测微/纳米塑料的植物毒性可为土壤中微/纳米塑料治理提供抓手。本文以水稻为研究对象,发展了基于同步辐射X射线荧光 (SRXRF) 光谱与机器学习的非靶标金属组学方法,以预测聚氯乙烯纳米塑料(nPVC) 对水稻的毒性。首先将水稻暴露于不同浓度(500 ppb与500 ppm) nPVC,培养35天后,收集水稻叶;其次,利用SRXRF研究暴露nPVC后水稻叶中金属组的变化;然后,利用机器学习方法区分暴露不同浓度nPVC水稻样品。对SRXRF光谱进行主成分分析 (PCA) 非监督聚类,发现500 ppm组能够良好聚类,而500 ppb组与对照组无明显差异,表明500 ppb的nPVC暴露对植物的毒性远低于500 ppm nPVC。对SRXRF全光谱,利用线性模型K近邻算法(KNN)和非线性模型支持向量机(SVM)建立预测模型,区分不同组别的准确率可达94.12%。为了提升运算速度,减少模型计算量,使用竞争性自适应加权重采样算法(CARS)挑选特征光谱建立预测模型,区分不同组别的准确率为89.51%。相对全光谱模型,特征光谱预测模型虽然预测准确率下降了4.61%,但模型输入参数减少了99.38%,因此同样具有良好潜力。本研究表明基于SRXRF和机器学习的非靶标金属组学可准确预测不同浓度nPVC对水稻金属组的干扰程度,从而反映nPVC对水稻毒性的浓度依赖性。该方法同样可用于预测其它微/纳米塑料毒性的浓度依赖性。  相似文献   

11.
This paper employs the SAXS technique to study the microstructure evolution of nano Al2O3/low-density polyethylene (LDPE) composite film during temperature increase and decrease (including interfacial layer thickness, mass fractal and surface fractal), and discusses the deformation memory effect (DME) mechanism. Compared with the case of pure LDPE, there are some new phenomena observed in the Al2O3/LDPE composite film, such as an interfacial layer and surface fractal. The experimental results showed that, when the temperature rose from 25 °C to 180 °C, the interfacial layer thickness of the composite film increased from 2.8 nm to 3.5 nm, and the surface fractal dimension increased from 1.2 to 2.0, with the lamellar crystal of the PE molecular chains melting. When the temperature dropped from 180 °C to 30 °C, the interfacial layer thickness decreased from 3.5 nm to 3.0 nm, and the surface fractal dimension changed from 2.0 to 1.2, with the PE molecular chains recrystallizing. We found that the DME of the interface layer is that thickness and area increase when temperature rises and decrease when temperature decreases. The addition of Al2O3 nanoparticles into the polymer results in the adsorption of space charges in the matrix onto the nanoparticles and in the interfacial regions, which efficiently inhibits the space charge accumulation of the composite material in the gradient electrical field.  相似文献   

12.
Flores AV  Pérez CA  Arruda MA 《Talanta》2004,62(3):619-626
In the present paper, lithium was determined in river sediment using slurry sampling and electrothermal atomic absorption spectrometry (ET AAS) after L’vov platform coating with zirconium (as a permanent chemical modifier). The performance of this modifier and its distribution on the L’vov platform after different heating cycles were evaluated using synchrotron radiation X-ray fluorescence (SRXRF) and imaging scanning electron microscopy (SEM) techniques. The analytical conditions for lithium determination in river sediment slurries were also investigated and the best conditions were obtained employing 1300 and 2300 °C for pyrolysis and atomization temperatures, respectively. In addition, 100 mg of sediment samples were prepared using 4.0 mol l−1 HNO3. The Zr-coating permitted lithium determination with good precision and accuracy after 480 heating cycles using the same platform for slurry samples. The sediment samples were collected from five different points of the Cachoeira river, São Paulo, Brazil. The detection and quantification limits were, respectively, 0.07 and 0.23 μg l−1.  相似文献   

13.
The prospects of a modern analysis of nanostructure evolution during the processing of polymer materials by means of scattering from synchrotron radiation are demonstrated in examples. The beam sources have gained stability, shortages are located in beamline setups and in method development for the quantitative analysis of voluminous data sets.By using the proposed multidimensional chord distribution function (CDF) analysis method, nanostructure information from small-angle X-ray scattering (SAXS) data are extracted and visualised. The method can be automated if the beamline setup is able to deliver a full data set with simple constraints. In this case even a simultaneous data evaluation is possible (while one pattern is accumulated, the previous one is analysed). The advantages of the method are demonstrated in a study of the straining of a thermoplastic elastomer. The possibilities of an automated analysis are demonstrated in an investigation of the crystallisation behaviour of high-pressure injection-moulded polyethylene (HPIM-PE). The achievable results of nanostructure analysis of polymer materials are discussed. It is shown that the time-resolved SAXS of polymer materials studied during a transformation and analysed by the CDF method is not just a powerful tool to investigate the relationship between structure and properties of materials; the information that can be gained concerning the processes that control nanostructure evolution is equally important. In the future the enlightenment of such relationships may help to tailor polymer materials with respect to their properties and, beyond that, to improve assessments concerning their aging.  相似文献   

14.
The unique properties of synchrotron radiation, such as high incident flux combined with low divergence, its linear polarization and energy tunability, make it an ideal excitation source for total reflection X-ray fluorescence (TXRF) spectroscopy in order to non-destructively detect trace impurities of transition metals on Si wafer surfaces. When used with a detector suitable for the determination of low energy radiation this technique can be extended to the detection of low-Z elements, such as Al, Na and Mg. Experiments have been performed at SSRL Beamline 3-3, a bending magnet beamline using monochromatic radiation from a double multilayer monochromator. The wafer was mounted vertically in front of the detector, which was aligned along the linear polarization vector of the incoming synchrotron radiation. This configuration allows the detector to accept a large solid angle as well as to take advantage of the reduced scattered X-ray intensity emitted in the direction of the linear polarization vector. A comparison between droplet samples and spin coated samples was done, in order to compare the capabilities of vapor phase decomposition (VPD-TXRF) with conventional SR-straight-TXRF. Detection limits in the range of 50 fg corresponding to 2E10 atoms/cm2 have been obtained for Na. The spin coated samples, prepared from solutions containing an equal amount of Na, Mg and Al showed an unexpected result when performing a scan of the angle of incidence of the incoming X-rays suggesting a different adsorption behavior of the elements in a multielement solution on the wafer surface. The observation of this behavior is important because the spin coating technique is the standard method for the preparation of surface standards in semiconductor quality control. This effect could be characteristic of the Na, Mg, Al solution used, but the angle dependence of the fluorescence signal of a standard should always be investigated before using the standard for calibration of the apparatus and quantification.  相似文献   

15.
To reveal the chemical changes induced in DNA by irradiation with ionizing radiation, we have investigated the spectral change in the X-ray absorption near edge structure (XANES) of DNA resulting from exposure to monochromatic soft X-rays. We used a thin film of calf thymus DNA as a sample and observed nitrogen K-shell and oxygen K-shell XANES spectra. The typical monochromatic soft X-ray energies used for the irradiation (395, 408, 528, and 538 eV) were obtained from a soft X-ray beamline (BL23SU, SPring-8). These energies correspond to those just below or just above the nitrogen and oxygen K-shell ionization energy, respectively. The obtained XANES spectra show significant changes by irradiation. Particularly a new π* resonance peak in oxygen XANES spectra evidently appeared by the irradiation above oxygen K-shell ionization potential. These results suggest that carbonyl groups, presumably a propenal group (OC–CC), may be produced in the sample by oxygen ionization. Thus characteristic damage induced by induction in the DNA molecule would be predicted following exposure to monochromatized synchrotron soft X-rays.  相似文献   

16.
The synchrotron radiation based high-resolution grazing emission X-ray fluorescence (GEXRF) technique was used to extract the distribution of Al ions implanted with a dose of 1016 atoms/cm2 in Si wafers with energies ranging between 1 and 100 keV. The depth distributions of the implanted ions were deduced from the measured angular profiles of the Al-Kα X-ray fluorescence line with nanometer-scale precision. The experimental results were compared to theoretical predictions of the depth distributions resulting from ion implantation. A good agreement between experiment and theory was found which proved that the presented high-resolution grazing emission X-ray fluorescence technique is well suited to perform depth profiling measurements of impurities located within the extinction depth, provided the overall shape of the distribution can be assumed a priori.  相似文献   

17.
Trejos T  Almirall JR 《Talanta》2005,67(2):388-395
The authors have previously reported the use of laser ablation ICP-MS as a powerful analytical tool for elemental analysis of glass. LA is a simpler, faster and less intrusive sample introduction method than the conventional solution ICP-MS. Due to the minute amount of material removed in LA (∼300 ng, 50 μm crater size), the analyst should be aware of special sampling considerations such as characterization of the glass fragments originating from the “known” source, fragment size and selection of the area and surface of ablation.The purpose of this work was to evaluate the micro-homogeneity of the elemental composition of glass samples commonly found in crime scenes like containers, architectural windows and windshields. The set of glasses under study was comprised of 56 fragments originated from glass containers, 28 fragments from automobile windshields and 20 fragments from architectural windowpanes. All fragments were selected with a size smaller than 2 mm2 in order to simulate the typical glass fragments transferred from the crime scenarios. A Nd:YAG laser, 266 nm, flat top beam profile was used in single point mode sampling 50 μm spot size for 50 s at 10 Hz (500 shots). In this study, 29Si was used as an internal standard and the standard reference material, SRM NIST 612, was used as a single point external calibrator. In addition, SRM 621 was used as another control standard for the containers set and SRM 1831 for the automobile and architectural window sets due to their very similar matrix with the samples of interest. For each set of glasses, the mean values and standard deviation of 10 replicates (n = 10) of a single fragment were compared with the values obtained from 10 (n = 10) different fragments of glass within the area of interest in order to evaluate whether or not the variation within a glass was bigger than the variation due to the method. In addition, a subset of tempered glasses was evaluated to perform an elemental composition profile within different depths of the fragments. Single shot (one laser pulse per analysis) was also evaluated and its limitations for the forensic analysis of glass are also presented. The results show that float glass is homogenous even at the micro-range level allowing LA-ICP-MS as an alternative technique to perform elemental analysis of glass. However, the variation of elemental composition of headlamps and containers is larger over the source than the instrumental variation due to inherent heterogeneity and therefore specific statistical methods are recommended to compare the glass samples.  相似文献   

18.
In this work total reflection X-ray fluorescence spectrometry has been employed to determine trace element concentrations in different human breast tissues (normal, normal adjacent, benign and malignant). A multivariate discriminant analysis of observed levels was performed in order to build a predictive model and perform tissue-type classifications. A total of 83 breast tissue samples were studied. Results showed the presence of Ca, Ti, Fe, Cu and Zn in all analyzed samples. All trace elements, except Ti, were found in higher concentrations in both malignant and benign tissues, when compared to normal tissues and normal adjacent tissues. In addition, the concentration of Fe was higher in malignant tissues than in benign neoplastic tissues. An opposite behavior was observed for Ca, Cu and Zn. Results have shown that discriminant analysis was able to successfully identify differences between trace element distributions from normal and malignant tissues with an overall accuracy of 80% and 65% for independent and paired breast samples respectively, and of 87% for benign and malignant tissues.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号