首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separate developments of microarray patterning of DNA oligonucleotides, and of DNA hairpins as sensitive probes for oligonucleotide identification in solution, have had a tremendous impact on basic biological research and clinical applications. We have combined these two approaches to develop arrayable and label-free biological sensors based on fluorescence unquenching of DNA hairpins immobilized on metal surfaces. The thermodynamic and kinetic response of these sensors, and the factors important in hybridization efficiency, were investigated. Hybridization efficiency was found to be sensitive to hairpin secondary structure, as well as to the surface distribution of DNA hairpins on the substrate. The identity of the bases used in the hairpin stem as well as the overall loop length significantly affected sensitivity and selectivity. Surface-immobilized hairpins discriminated between two sequences with a single base-pair mismatch with high sensitivity (over an order of magnitude difference in signal) under identical assay conditions (no change in stringency). This represents a significant improvement over other microarray-based techniques.  相似文献   

2.
DNA and RNA hairpins, which represent well-folded oligonucleotide structures, were irradiated and the amount of damaged hairpins was directly quantified by using ion-exchange HPLC. The types of photoproducts formed in the hairpins were determined by ESI-HPLC-MS/MS experiments. Irradiation of hairpins with systematically varied sequences and conformations (A versus B) revealed remarkable differences regarding the amount of photolesions formed. UV-damage formation is, therefore, a strongly sequence and conformation dependent process.  相似文献   

3.
Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and parallel triplexes were evaluated using gel electrophoresis, circular dichroism and thermal denaturation measurements. The non-nucleosidic modifications were found to increase the thermal stability of palindromic hairpins at pH 8.0 as compared with a nucleosidic tetraloop (TCTC). Incorporation of modifications at the 5'-end of a triplex forming oligonucleotide resulted in a significant increase in thermal stability at low pH when the modifications were placed as the 5'-dangling end.  相似文献   

4.
The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s−1, relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.  相似文献   

5.
A major limitation in the applicability of automated DNA sequencing instruments has been the difficulty in using user-defined oligonucleotide primers which allow sequencing reactions to start at any specific point in a region of interest. Recently, new chemistries have become available for fluorescent labeling which will begin to facilitate the use of any oligonucleotide primer with automated DNA sequencers. In this report, we describe several methods for automated primer-directed DNA sequencing, and compare and discuss the relative merits and limitations of these methods.  相似文献   

6.
Many key characteristics of hole transfer (HT) in DNA have been derived from spectroscopic studies of DNA hairpins. Because the capping groups in the hairpins can remarkably influence the structure and flexibility of the pi stack, and therefore, the charge transfer rate, the question arises of whether the HT parameters obtained for hairpins may be transferred to DNA oligomers. On the basis of large-time scale QM/MD simulations, we compare structural and electronic parameters of AT stacks in hairpins and DNA oligomers. We find that even in short hairpins, Sa-AA-Sd and Sa-AAA-Sd, the effects of the capping chromophores on the structure of the pi stack and the HT couplings properly averaged over MD trajectories are relatively small, and therefore, the hairpins are good models to study hole transfer through DNA. By contrast, the calculations of the electronic couplings based on the average structures of the systems lead to essential errors in the HT rate and the misleading statement that the charge transfer properties of DNA domains within hairpins are quite different from those of normal sequences.  相似文献   

7.
The structure and properties of 18 hairpin-forming bis(oligonucleotide) conjugates possessing stilbene diether linkers are reported. Conjugates possessing bis(2-hydroxyethyl)stilbene 4,4'-diether linkers form the most stable DNA hairpins reported to date. Hairpins with as few as two T:A base pairs or four noncanonical G:G base pairs are stable at room temperature. Increasing the length of the hydroxyalkyl groups results in a decrease in hairpin thermal stability. On the basis of the investigation of their circular dichroism spectra, all of the hairpins investigated adopt B-DNA structures, except for a hairpin with a short poly(G:C) stem which forms a Z-DNA structure. Both the strong fluorescence of the stilbene diether linkers and their trans-cis photoisomerization are totally quenched in hairpins possessing neighboring T:A and G:C base pairs. Quenching is attributed to an electron-transfer mechanism in which the singlet stilbene serves as an electron donor and T or C serves as an electron acceptor. In contrast, in denatured hairpins and hairpins possessing neighboring G:G base pairs the stilbene diether linkers undergo efficient photoisomerization.  相似文献   

8.
Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA.  相似文献   

9.
There is a keen interest in developing techniques for rapid genetic analysis that do not require labeling of an analyte. Here we demonstrate that fluorophore-tagged DNA hairpins attached to gold films can function as immobilized "molecular beacons". Two DNA hairpins incorporating portions of the Staphlococcus aureus FemA and mecR methicillin-resistance genes were attached to a gold substrate. Upon exposure to the complement, a approximately 26-fold increase in fluorescence intensity was measured corresponding to a 96 +/- 5% quenching efficiency. Studies with nonspecific DNA indicate that DNA hairpins immobilized on a gold surface retain their ability to bind complementary DNA sequences selectively.  相似文献   

10.
Molecular beacons (MBs) are fluorescent nucleic acid probes with a hairpin-shaped structure in which the 5' and 3' ends are self-complementary. Due to a change in their emissive properties upon recognition with complementary sequences, MBs allow the diagnosis of single-stranded DNA or RNA with high mismatch discrimination, in vitro and in vivo. Whereas the stems of MB hairpins usually rely on the formation of a Watson-Crick duplex, we demonstrate in this report that the preceding structure can be replaced by a G-quadruplex motif (G4). Intramolecular quadruplexes may still be formed with a central loop composed of 12 to 21 bases, therefore extending the sequence repertoire of quadruplex formation. G4-MB can efficiently be used for oligonucleotide discrimination: in the presence of a complementary sequence, the central loop hybridizes and forms a duplex that causes opening of the quadruplex stem. The corresponding G4-MB unfolding can be detected by a change in its fluorescence emission. We discuss the thermodynamic and kinetic opportunities that are provided by using G4-MB instead of traditional MB. In particular, the intrinsic feature of the quadruplex motif facilitates the design of functional molecular beacons by independently varying the concentration of monovalent or divalent cations in the medium.  相似文献   

11.
Here, we report a novel, highly sensitive, selective and economical molecular beacon using graphene oxide as the “nanoquencher”. This novel molecular beacon system contains a hairpin‐structured fluorophore‐labeled oligonucleotide and a graphene oxide sheet. The strong interaction between hairpin‐structured oligonucleotide and graphene oxide keep them in close proximity, facilitating the fluorescence quenching of the fluorophore by graphene oxide. In the presence of a complementary target DNA, the binding between hairpin‐structured oligonucleotide and target DNA will disturb the interaction between hairpin‐structured oligonucleotide and graphene oxide, and release the oligonucleotide from graphene oxide, resulting in restoration of fluorophore fluorescence. In the present study, we show that this novel graphene oxide quenched molecular beacon can be used to detect target DNA with higher sensitivity and single‐base mismatch selectivity compared to the conventional molecular beacon.  相似文献   

12.
The structure and properties of oligonucleotide conjugates possessing stilbenedicarboxamide chromophores at both ends of a poly(dA):poly(dT) base-pair domain of variable length have been investigated using a combination of spectroscopic and computational methods. These conjugates form capped hairpin structures in which one stilbene serves as a hairpin linker and the other as a hydrophobic end-cap. The capping stilbene stabilizes the hairpin structures by ca. 2 kcal/mol, making possible the formation of a stable folded structure containing a single A:T base pair. Exciton coupling between the stilbene chromophores has little effect on the absorption bands of capped hairpins. However, exciton-coupled circular dichroism (EC-CD) can be observed for capped hairpins possessing as many as 11 base pairs. Both the sign and intensity of the EC-CD spectrum are sensitive to the number of base pairs separating the stilbene chromophores, as a consequence of the distance and angular dependence of exciton coupling. Calculated spectra obtained using a static vector model based on canonical B-DNA are in good agreement with the experimental spectra. Molecular dynamics simulations show that conformational fluctuations of the capped hairpins result in large deviations of the averaged spectra in both the positive and negative directions. These results demonstrate for the first time the ability of B-DNA to serve as a helical ruler for the study of electronic interactions between aligned chromophores. Furthermore, they provide important tests for atomistic theoretical models of DNA.  相似文献   

13.
The in-vitro nick translation reaction used to label DNA to high specific activity also produces aberrant DNA structures known as “snapback” hairpin loops. Hairpin structures are precluded from participating in precise DNA-DNA hybridization interactions. Three nick translation systems were all found to yield significant quantities of snapback hairpins, as determined by their resistance to S1 endonuclease digestion following denaturation. The relative quantities of hairpins produced correlated with both the mass average size of the final DNA probe product synthesized as well as the overall rate of the nick translation reaction. Decreases in the amount of exogenous DNase I used in nick translation reactions produced significant decreases in the amount of hairpin loop structures formed. Hairpins could be effectively removed from nick-translated DNAs by employing hydroxylapatite column chromatography. Strategies to reduce hairpin formation during nick translation and the removal of hairpins from nick-translated DNAs are presented.  相似文献   

14.
Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling.  相似文献   

15.
Under certain conditions, repetitive DNA motifs have the potential to adopt non‐B‐form DNA structures, such as hairpins, triplexes, Z‐DNA, quadruplexes, and i‐motifs. Some non‐B‐form DNAs have been proposed to cause mutations and, consequently, participate in several biologically important processes, including regulation, evolution, and human disease. Advancement in the knowledge of specific interactions between molecules and non‐B‐form DNAs at the molecular level in living cells is important for understanding their biological functions. In this review, we describe the latest studies on molecules that target non‐B‐form DNAs in vivo, with a focus on Z‐DNA, G‐quadruplexes, triplexes, i‐motifs, and hairpins.  相似文献   

16.
The separate arrangement of target recognition and signal transduction in conventional biosensors often compromises the real‐time response and can introduce additional noise. To address these issues, we combined analyte recognition and signal reporting by mechanochemical coupling in a single‐molecule DNA template. We incorporated a DNA hairpin as a mechanophore in the template, which, under a specific force, undergoes stochastic transitions between folded and unfolded hairpin structures (mechanoescence). Reminiscent of a tuning fork that vibrates at a fixed frequency, the device was classified as a molecular tuning fork (MTF). By monitoring the lifetime of the folded and unfolded hairpins with equal populations, we were able to differentiate between the mono‐ and bivalent binding modes during individual antibody‐antigen binding events. We anticipate these mechanospectroscopic concepts and methods will be instrumental for the development of novel bioanalyses.  相似文献   

17.
The sequence-specific recognitions between DNA and proteins are playing important roles in many biological functions. The double-stranded DNA microarrays (dsDNA microarrays) can be used to study the sequence-specific recognitions between DNAs and proteins in highly parallel way. In this paper, two different elongation processes in forming dsDNA from the immobilized oligonucleotides have been compared in order to optimize the fabrication of dsDNA microarrays: (1) elongation from the hairpins formed by the self-hybridized oligonucleatides spotted on a glass; (2) elongation from the complementary primers hybridized on the spotted oligonucleatides. The results suggested that the dsDNA probes density produced by the hybridized-primer extension was about four times lower than those by the self-hybridized hairpins. Meanwhile, in order to reduce the cost of dsDNA microarrays, we have replaced the Klenow DNA polymerase with Taq DNA polymerase, and optimized the reaction conditions of on-chip elongation. Our experiements showed that the elongation temperature of 50 °C and the Mg2+ concentration of 2.5 mM are the optimized conditions in elongation with Taq DNA polymerase. A dsDNA microarray has been successfully constructed with the above method to detect NF-kB protein.  相似文献   

18.
Prof. Dr. Xia Guo  Bo Cui 《中国化学》2010,28(11):2130-2136
Recently, we reported for the first time that oligonucleotide could induce single‐chained cationic surfactant molecules to aggregate into vesicles and the facilitative efficiency of oligonucleotide on vesicle formation was dependent on its size and sequence. In the present paper, we will continue to study the effects of acid and base on the facilitative efficiency of oligonucleotide on vesicle formation. It is found that proton ions show little effect on the facilitative efficiency while hydroxide ions make it decreased. Moreover, the percentage of oligonucleotide involved in vesicle formation in basic solution is much lower than that in acidic solution (which is almost equal to that in water). Since the structures and properties of DNA/amphiphile complex are very important for its application as nonviral gene carrier, this study may provide some helpful information for gene therapy.  相似文献   

19.
A target-driven DNA association was designed to initiate cyclic assembly of hairpins, which led to an enzyme-free amplification strategy for detection of a nucleic acid or aptamer substrate and flexible construction of logic gates. The cyclic system contained two ssDNA (S1 and S2) and two hairpins (H1 and H2). These ssDNA could co-recognize the target to produce an S1–target–S2 structure, which brought their toehold and branch-migration domains into close proximity to initiate the cyclic assembly of hairpins. The assembly product further induced the dissociation of a double-stranded probe DNA (Q:F) via toehold-mediated strand displacement to switch the fluorescence signal. This method could detect DNA and ATP as model analytes down to 21.6 pM and 38 nM, respectively. By designing different DNA input strands, the “AND”, “INHIBIT” and “NAND” logic gates could be activated to achieve the output signal. The proposed biosensing and logic gate operation platform showed potential applications in disease diagnosis.  相似文献   

20.
Song W  Zhu K  Cao Z  Lau C  Lu J 《The Analyst》2012,137(6):1396-1401
We introduce here a novel assay for the detection of platelet-derived growth factor BB (PDGF-BB) via hybridization chain reaction (HCR) based on an aptameric system, where stable DNA monomers assemble only upon exposure to a target PDGF-BB aptamer. In this process, two complementary stable species of biotinylated DNA hairpins coexist in solution until the introduction of initiator aptamer strands triggers a cascade of hybridization events that yields nicked double helices analogous to alternating copolymers. In detail, the aptamer firstly opens the hairpins in the solution, creating long concatemers, and then reacts with the antibody captured PDGF-BB on the well surface. Moreover, several experimental conditions including different PDGF-BB aptamers, the spacer length of the selected aptamer and hairpin, etc. are investigated and optimized. Our results show that the coupling of HCR to aptamer triggers for the amplification detection of PDGF-BB achieves a better performance in the fluorescence detection of PDGF-BB as compared to the traditional antibody-antigen-aptamer assays. Upon modification, the approach presented herein could be extended to detect other types of targets. We believe such advancements will represent a significant step towards improved diagnostics and more personalized medical treatment and environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号