共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we describe an automated stripping analyzer operating on a hybrid flow-injection/sequential-injection (FIA/SIA) mode and utilizing a bismuth-film electrode (BiFE) as a flow-through sensor for on-line stripping voltammetry of trace metals. The instrument combines the advantages of FIA and SIA and is characterised by simplicity, low-cost, rapidity, versatility and low consumption of solutions. The proposed analytical flow methodology was applied to the determination of Cd(II) and Pb(II) by anodic stripping voltammetry (ASV) and of Ni(II) and Co(II) by adsorptive stripping voltammetry (AdSV). The steps of the rather complex experimental sequence (i.e. the bismuth-film formation, the analyte accumulation, the voltammetric stripping and the electrode cleaning/regeneration) were conducted on-line and the critical parameters related to the respective analytical procedures were investigated. In ASV, for a accumulation time of 180 s the limits of detection for Cd(II) and Pb(II) were 2 and 1 μg l−1, respectively (S/N = 3) and the relative standard deviations were 5.3% and 4.7%, respectively (n = 8). In AdSV, for a total sample volume of 1000 μl, the limits of detection for Ni(II) and Co(II) were 1 μg l−1 (S/N = 3) and the relative standard deviations were 5.5% and 6.2%, respectively (n = 8). The measurement frequency ranged between 15 and 20 stripping cycles h−1. The results indicate that the BiFE is well suited as a flow-through detector for on-line stripping analysis and, by virtue of its low toxicity, can serve as a viable alternative to mercury-based flow-through electrodes. 相似文献
2.
Christos Kokkinos Anastasios Economou Ioannis Raptis Constantinos E. Efstathiou Thanasis Speliotis 《Electrochemistry communications》2007,9(12):2795-2800
This work describes a novel type of bismuth electrode for stripping voltammetry based on coating a silicon substrate with a thin bismuth film by means of sputtering. The bismuth-based sensors were characterized by optical methods (scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD)) and as well as by linear sweep voltammetry. Subsequently, the electrodes were tested for the detection of low concentrations of trace metals (Cd(II), Pb(II) and Ni(II)) by stripping voltammetry. Well-formed stripping peaks were observed for trace concentrations of the target analytes demonstrating “proof-of-principle” for these sensors. This type of electrochemical device, utilizing thin-film technology for the formation of the bismuth film, holds promise for future applications in trace metal analysis. 相似文献
3.
A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Ω. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO2 nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO2 nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated. 相似文献
4.
This work is a study of the analytical utility of Nafion-modified microfabricated bismuth film electrodes (BiFEs) for the determination of Pb(II) and Cd(II) by anodic stripping voltammetry (ASV) in the presence of surfactants. Micro-fabricated BiFEs were prepared by depositing a thin film of bismuth on the surface of a silicon substrate by sputtering while the two-dimensional geometry of the final sensors was defined by photolithography. The BiFEs were further drop-coated with a Nafion film. These devices were applied to the determination of Pb(II) and Cd(II) by square wave ASV (SWASV) in the presence of Triton X-100 (a non-ionic surfactant), cetyltrimethylammonium bromide (CTAB) (a cationic surfactant) and sodium dodecyl sulphate (SDS) (an anionic surfactant). It was found that the presence of Nafion afforded an increase in sensitivity and the tolerance against surfactants but these properties were severely influenced by both the thickness of the Nafion film and the nature of the interfering surfactant. Using a Nafion of 0.4 μm thickness and 120 s of preconcentration, the repeatability (expressed as the % relative standard deviation on the same sensor (n = 8)) at the 20 μg l−1 level was 3.8% for Pb(II) and 3.1% for Cd(II) and the limits of detection were 0.5 μg l−1 for Cd(II) and Pb(II). The sensors were applied to Cd(II) and Pb(II) determination in a certified lake-water sample. 相似文献
5.
Kate A. Eric P. Charlotte B. Alan D. Paul J. David R. 《Trends in analytical chemistry : TRAC》2003,22(11):828-835
Developments in instrument miniaturisation and automation have resulted in the manufacture of portable electrochemical instrumentation for continuous trace-metal measurements from the banks of estuaries and on board ships. The most recent developments in flow cells with gel-coated iridium (Ir) micro-electrode arrays have resulted in submersible in situ voltammetric probes that allow long-term trace-metal monitoring at sub-nanomolar concentrations in coastal waters. This article overviews the design and the application of field-deployable voltammetric instrumentation for trace-metal monitoring. 相似文献
6.
A new methodology was proposed for the speciation of chromium by differential pulse adsorptive stripping voltammetry (DPAdSV) using pyrocatechol violet (PCV) and N-(2-hydroxyethyl)ethylenediamine-N,N′,N′-triacetic acid (HEDTA) as complexing agents. In this procedure, a partial least squares (PLS) regression was used for the resolution of the strongly overlapping voltammetric signals from mixtures of Cr(III) and Cr(VI) in the presence of PCV and HEDTA. The relative error in absolute value was <6% when concentrations of several mixtures were calculated. The analysis of the possible effect of the presence of foreign ions in the solution was performed. The procedure was successfully applied to the speciation of chromium in different samples of natural water. 相似文献
7.
Anaclet Nsabimana Shimeles Adissu Kitte Tadesse Haile Fereja Mohamed Ibrahim Halawa Wei Zhang Guobao Xu 《Current Opinion in Electrochemistry》2019
Development of sensing systems for trace metals is highly important because the abnormal concentration of some metals or the presence of some traces of toxic metals is very dangerous. The stripping analysis is an efficient way to detect metals even at low concentrations. Much work has been carried out to develop highly sensitive, stable, reproducible, and cheap electrochemical sensors for metal ions. This review summarizes the recent progress is stripping analysis of trace metals, focusing on works published from 2015 to 2019. 相似文献
8.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items. 相似文献
9.
Determination of trace metals in Nile River and ground water by differential pulse stripping voltammetry 总被引:1,自引:0,他引:1
Zanaty R. Komy 《Mikrochimica acta》1993,111(4-6):239-249
The determination of trace metals in river water and ground water by DPSV is seriously disturbed by the presence of organic complexes. The influence of these substances can be eliminated by acidification of the samples with acids. Cd, Pb and Cu were determined at pH 1.1 (HNO3 medium) and Zn, Cd, Pb and Cu at pH 2 (HCl medium), in both the Nile river and ground water. Zn was determined at pH 3.5 in HCl and pH 4.5 in HNO3, after neutralizing the samples with NH3/NH4Cl buffer. Manganese could then be determined, after further addition of ammoniacal buffer solution up to pH 7.5 and 8.5. Ni and Co were determined in the adsorptive mode after formation of dimethylglyoximates at pH 9.2. The effect of pH on the stripping peaks of manganese was studied. Good agreement was observed between DPSV and AAS results for Zn, Cd, Pb, Cu and Mn, but the concentrations of Ni and Co were below the detection limits for AAS. Good agreement was obtained between DPSV results in HCl and HNO3 for Ni and Co. The results indicate that decomposition of organic complexes by acidification with HNO3 is better than in the case with HCl for Zn, Pb, Cu, Ni and Co, but HCl is better than HNO3 for Cd and Mn. 相似文献
10.
The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary. 相似文献
11.
The possibility of applying antimony-film modified glassy carbon electrode in sequential-injection analysis (SIA) was investigated with the objective of determining Pb(II) and Cd(II) by anodic stripping voltammetry (ASV). The conditions of antimony-film deposition concerning composition of the plating/carrier solutions, concentrations of Sb(III) and hydrochloric acid, effects of different supporting electrolyte salts, and plating potential were optimized. It was found that the antimony-film deposition on glassy carbon substrate in a sample solution consisting of 750 μg L−1 Sb(III), 0.5 mol L−1 HCl at −1.5 V (vs. Ag/AgCl/3 mol L−1 KCl) yielded a modified electrode suitable for the determination of Pb(II) and Cd(II) at the μg L−1 level. The reproducibility of the analytical signals was characterized by a relative standard deviation lower than 2.8%, and the calculated values of detection limits were 1.2 μg L−1 for Pb(II) and 1.4 μg L−1 for Cd(II). The presence of KSCN in the sample solution offers the possibility of detecting ions with more negative oxidation potentials like Zn(II), Mn(II) or Cr(III). The developed SIA-ASV procedure was compared with the commonly used batch method, and its applicability was tested on a spiked tap water sample. 相似文献
12.
This work reports the fabrication of disposable three-electrode cells with integrated metal-film electrodes. The devices were fabricated by a multi-step micro-fabrication approach combining sputtering for the deposition of metals and the dielectric material (SiO2) on the surface of a silicon wafer and photolithography for the definition of the geometry of the sensors. The working electrode was a microelectrode array consisting of bismuth microdisks while the reference and counter electrode strips were made of Ag and Pt, respectively. The utility of these devices was tested for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry and Ni(II) by adsorptive stripping voltammetry. The detection of these trace metals was carried out in unstirred and undeoxygenated solutions exhibiting sub-μg L−1 limits of detection and enhanced analytical characteristics compared to conventional bismuth-film electrodes. 相似文献
13.
The study of a new type of working electrode - the renovated silver ring electrode (RSRE) - for lead ions detection via differential pulse anodic stripping voltammetry (DP ASV) without removal of oxygen is reported. The only four constituents of the RSRE: a specially constructed silver ring electrode, a silver sheet used as silver counter/quasi-reference electrode and a silicon O-ring, are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RSRE body. Excellent repeatability and reproducibility - also in organic samples solutions - were reached in a period of a few weeks through the renovation of the electrode surface before each measurement. The reduction and stripping of lead on silver electrode under the DP ASV conditions are underpotential deposition/dissolution phenomena. The RSRE is used for the determination of Pb ions in concentrations ranging from 1 × 10−9 to 1 × 10−7 M. The repeatability of DP ASV runs in synthetic solutions covering the entire concentration range is better than 2%. Obtained calibration curves are represented by a correlation coefficient of at least 0.999. The detection limit (LOD) for the time of electrodeposition equal to 60 s is 0.2 × 10−9 M. LOD for Pb2+ detection at the RSRE is similar to this reported for a rotating silver electrode in subtractive anodic stripping voltammetry (E. Kirowa-Eisner, et al., Anal. Chim. Acta, 385 (1999) 325). The analysis of Pb2+ in synthetic solutions with and without surfactants, certified reference materials and natural water samples have been performed. 相似文献
14.
M. Jesús Gómez González 《Talanta》2007,71(2):691-698
This paper describes a new procedure for the determination of Sb (III) and Sb (V) by differential pulse adsorptive stripping voltammetry (DPAdSV) using pyrogallol as a complexing agent. The selection of the experimental conditions was made using experimental design methodology. The detection limits obtained were 1.03 × 10−10 and 9.48 × 10−9 mol dm−3 for Sb (III) and Sb (V), respectively.In order to carry out the simultaneously determination of both antimony species a partial least squares regression (PLS) is employed to resolve the voltammetric signals from mixtures of Sb (III) and Sb (V) in the presence of pyrogallol. The relative error in absolute value is less than 0.5% when concentrations of several mixtures are calculated. Moreover, the solution is analyzed for any possible effects of foreign ions. The procedure is successfully applied to the speciation of antimony in pharmaceutical preparations and water samples. 相似文献
15.
Multicriteria optimization, widely used in engineering, does not much used in the optimization of analytical signals. The aim of this paper is to show the usefulness of the desirability function to optimize instrumental responses obtained in instrumental analysis. The simultaneous optimization of a signal and of its variability is a generic question of interest to any chemical analyst. It is clear that the improvement of the two responses forms the basis of the validation of any analytical method, and affects all the figures of merit: accuracy (trueness and precision), capability of detection, robustness, sensitivity, etc. Furthermore, in the specific case of electroanalysis, an improvement in the signal may implicitly mean an increase of the signal in the blank, such that the “net signal” may not improve. This experimental approach (surface response methodology plus desirability) to multicriteria optimization has been applied to three cases of growing complexity. Thus, in the determination of Cu(II) by differential pulse anodic stripping voltammetry the simultaneous maximization of the peak current and minimization of its standard deviation is looked for. Whereas, in the determinations of Ni(II) and indomethacin by differential pulse adsorptive stripping voltammetry, the simultaneous maximization of the peak current and minimization of the blank signal is desired. In all the cases, the experimental conditions where the optima are found for each individual response are just opposite, so it is required to look for a certain compromise, that is achieved using the desirability function. 相似文献
16.
M.Adelaide Ferreira 《Analytica chimica acta》2002,459(1):151-159
A simple, fast and quantitative method was developed for the determination of As(III) and total inorganic arsenic (As (total)) in natural spring and mineral waters using square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). In the determination of As(III), pre-concentration was carried out on the electrode from a solution of 1 mol/l HCl in the presence of 45 ppm of Cu(II) at a potential of −0.39 V versus Ag/AgCl, and the deposited intermetallic compound was reduced at a potential of about −0.82 V versus Ag/AgCl. In the determination of As (total) the pre-concentration was carried out in 1 mol/l HCl in the presence of 400 ppm of Cu(II) at a potential of −0.40 V versus Ag/AgCl, and the intermetallic compound deposited was reduced at a potential of about −0.76 V versus Ag/AgCl. For determination of As(III) the quantification limit was 0.2 ppb for a deposition time of 40 s, and the relative standard deviation (R.S.D.) was calculated to be 6% (n=13) for a solution with 8 ppb of As(III). For As (total), the quantification limit was 2 ppb for a deposition time of 3 min, and the R.S.D. was calculated to be 3% (n=10) for a solution with 8 ppb of As(V). The method was validated by application of recovery and duplicate tests in the measurements of As(III) and As (total) in natural spring and mineral waters. For As (total), the results of the SWCSV method were compared with the results obtained by optical emission spectrometry with ICP coupled to hydride generation (OES-ICP-HG) good correlation being observed. 相似文献
17.
A highly selective and sensitive anodic stripping differential pulse polarographic method has been developed for the determination of trace amount of bismuth in various samples after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex on amberlite XAD-2 resin in the pH range of 2.0-3.0. The retained analyte on the resin recovered with 10.0 ml of 2 M hydrochloric acid and bismuth is determined by anodic stripping differential pulse polarography. In this case, 0.15 μg of bismuth can be concentrated in the column from 1100 ml of aqueous sample, where its concentration is as low as 0.14 ng ml−1 and the linearity is maintained in the concentration range 0.05-160 μg ml−1 in final solution with a correlation coefficient of 0.999 and relative standard deviation of ±1.2%. Various parameters such as the effect of pH, flow rate, and interference of number of metal ions on the determination of bismuth have been studied in detail to optimize the conditions for determination of bismuth in standard alloys: Nippon Keikinzoku Kogyo (NKK CRM No. 916 aluminum alloy); (NKK CRM No. 1021 Al, Si, Cu, Zn alloy); and (NKK CRM No. 920 aluminum alloy), biological samples: National Institute for Environmental Studies (NIES, No. 5 human hair; NIES, No. 7 tea leaves) and water samples: (spring water, river water; Kerman water; and Shiraz water). 相似文献
18.
Natalya Yu. Stozhko Natalya A. Malakhova Mikhail V. Fyodorov Khiena Z. Brainina 《Journal of Solid State Electrochemistry》2008,12(10):1219-1230
The second part of the review, which covers modified carbon-containing electrodes, describes composite and microelectrodes.
Electrodes made of commercial and laboratory carbon-containing composite materials are discussed. Impregnated and thick-film
electrodes and microelectrodes made of carbon fibers form a separate group. Various modifiers and methods of electrode modification
are presented. Prospects for the future development of solid-state modified electrodes are considered. 相似文献
19.
Tavares O Morais S Paíga P Delerue-Matos C 《Analytical and bioanalytical chemistry》2005,382(2):477-484
An extraction-anodic adsorptive stripping voltammetric procedure using microwave-assisted solvent extraction and a gold ultramicroelectrode was developed for determining the pesticide ametryn in soil samples. The method is based on the use of acetonitrile as extraction solvent and on controlled adsorptive accumulation of the herbicide at the potential of 0.50 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 3.3). Soil sample extracts were analysed directly after drying and redissolution with the supporting electrolyte but without other pre-treatment. The limit of detection obtained for a 10 s collection time was 0.021 g g–1. Recovery experiments for the global procedure, at the 0.500 g g–1 level, gave satisfactory mean and standard deviation results which were comparable to those obtained by HPLC with UV detection. 相似文献
20.
Trace metals play an important role in the regulation of primary productivity and phytoplankton community composition. Metal species directly affects the biogeochemical cycling processes, transport, fate, bioavailability and toxicity of trace metals. Therefore, developing powerful methods for metal speciation analysis is very useful for research in a range of fields, including chemical and environmental analysis. Voltammetric methods, such as anodic stripping voltammetry (ASV) and competing ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV), have been widely adopted for speciation analysis of metals in different natural aquatic systems. This paper provides an overview of the theory of voltammetric methods and their application for metal speciation analysis in natural waters, with a particular focus on current voltammetric methods for the discrimination of labile/inert fractions, redox species and covalently bound species. Speciation analysis of typical trace metals in natural waters including Fe, Cu, Zn, Cd, and Pb are presented and discussed in detail, with future perspectives for metal speciation analysis using voltammetric methods also discussed. This review can elaborate the particular knowledge of theory, merits, application and future challenge of voltammetric methods for speciation analysis of trace metals in natural waters. 相似文献