首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a flow-injection analysis (FIA) of glucose not using enzyme based on the electrocatalytic oxidation of glucose at a nickel electrode. The electrocatalytic mechanism and quantificational method of glucose have been investigated. The current intensity of the electrocatalytic oxidation to glucose at the potential of 550 mV is proportional to the concentration of glucose over the range of 0.10-2.50 mmol l−1, with a 0.04 mmol l−1 detection limit (S/N = 3) and a correlation coefficient of 0.9991. The relative standard deviation (R.S.D.) is less than 4.3% (n = 5) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine and epinephrine, do not disturb the determination of glucose. The result is satisfactory for the determination of glucose in human serum sample as comparison to that from the routine hexokinase method.  相似文献   

2.
This work reports a sequential-injection analysis (SIA) method for the enzymatic assay of glucose with soluble glucose oxidase (GOD) and on-line sample dilution with chemiluminescence (CL) detection. A zone of sample was aspirated in the holding coil of the SIA manifold and, if necessary, was diluted on-line by means of an auxiliary dilution conduit. Then, a zone of GOD was aspirated adjacent to the sample zone and a stopped-flow period was applied to allow the enzymatic reaction to proceed with production of hydrogen peroxide. Then, zones of a catalyst (Co(II) solution) and alkaline luminol were aspirated into the holding coil. Finally, the flow was reversed and the stacked zones were sent to a flow-cell located in front of a photomultiplier tube (PMT) that monitored the CL intensity. The linear dynamic range was 1 × 10−5-1 × 10−3 mol L−1 glucose, the coefficient of variation at 8 × 10−5 mol L−1 of glucose was sr = 3.1% (n = 8), the limit of detection at the 3σ level was cL = 1 × 10−6 mol L−1 and the sampling frequency was 28 h−1. With on-line dilution by a factor of 1/200, the linear range could be extended up to 0.2 mol L−1 glucose. The advantages of the proposed method are the simple manifold and instrumentation used, the scope for automated on-line dilution, the low consumption of sample and reagents and the elimination of enzyme immobilisation procedures. The method was applied to the analysis of commercial drinks and honey with percent relative errors in glucose determination in the range 100 ± 6.1%.  相似文献   

3.
A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L−1 with detection limit of 0.01 mmol L−1. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days).  相似文献   

4.
Abd-Rabboh HS  Meyerhoff ME 《Talanta》2007,72(3):1129-1133
The determination of glucose in beverages is demonstrated using newly developed fluoride selective optical sensing polymeric film that contains aluminum (III) octaethylporphyrin (Al[OEP]) ionophore and the chromoionophore ETH7075 cast at the bottom of wells of a 96-well polypropylene microtiter plate. The method uses a dual enzymatic reaction involving glucose oxidase enzyme (GOD) and horseradish peroxidase (HRP), along with an organofluoro-substrate (4-fluorophenol) as the source of fluoride ions. The concentration of fluoride ions after enzymatic reaction is directly proportional to the glucose level in the sample. The method has a detection limit of 0.8 mmol L−1, a linear range of 0.9-40 mmol L−1 and a sensitivity of 0.125 absorbance/decade of glucose concentration. Glucose levels in several beverage samples determined using the proposed method correlate well with a reference spectrophotometric enzyme method based on detection of hydrogen peroxide using bromopyrogallol red dye (BPR). The new method can also be used to determine H2O2 concentrations in the 0.1-50 mmol L−1 range using a single enzymatic reaction involving H2O2 oxidation of 4-fluorophenol catalyzed by HRP. The methodology could potentially be used to detect a wide range of substrates for which selective oxidase enzymes exist (to generate H2O2), with the high throughput of simple microtiter plate detection scheme.  相似文献   

5.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

6.
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.  相似文献   

7.
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E = −0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L−1 nitrate with a detection limit of 4.2 μmol L−1 (S/N = 3). The repeatability of measurements was determined as 4.7% (n = 9) at the best conditions (flow rate: 3.0 mL min−1, sample volume: 150 μL and nitrate concentration: 0.5 mmol L−1) with a sampling rate of 60 samples h−1. The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (−0.20 V).  相似文献   

8.
A simple and sensitive spectrophotometric flow method for determination of low concentrations of the flotation collector O-ethyldithiocarbonate (ethyl xanthate, CH3CH2-O-CS2) in solutions is described. The method is based on ethyl xanthate detection at 301 nm in medium of NaOH 50 mmol L−1. By injection of 200 μL of sample, the analytical method shows linear response for the ethyl xanthate concentration from 0.5 up to 500 μmol L−1. Successive injections of 4 μmol L−1 ethyl xanthate (n = 23) show a coefficient of variation lower than 0.6%, denoting high repeatability. The detection limit is 0.3 μmol L−1. At a flow rate of 2.0 mL min−1, a frequency of 120 injections/h of ethyl xanthate can be attained. By introduction of a tangential dialysis cell in the FIA system, the manual sample filtration step with 0.22 μm filter was eliminated and the residual interference of suspended material, was completely overcome even for unfiltered sludge suspension samples, an important advantage that compensates for the frequency reduction to 25 injections/h elevation and detection limit elevation to 2 μmol L−1, still outreaching for many applications. Potential applications of the method embrace the at line determination of ethyl xanthate in the ore processing industry, control of the concentration at its optimal level during the flotation process, as well as monitoring of residues in the effluents.  相似文献   

9.
Li YS  Gao XF 《Analytica chimica acta》2007,588(1):140-146
A novel method for the determination of ethanol in tequila based on the immobilized enzyme fluorescence capillary analysis (IE-EFCA) has been proposed. Alcohol dehydrogenase (ADH) was immobilized in inner surface of a capillary and an immobilized enzyme capillary bioreactor (IE-ECBR) was formed. After nicotinamide adenine dinucleotide (NAD+) as an oxidizer is mixed with alcohol sample solution, it was sucked into the IE-ECBR. The fluorescence intensity of the mixed solution in the IE-ECBR was detected at λex = 350 nm and λem = 459 nm. The experimental conditions are as follows: The reaction time is 20 min; temperature is 40 °C; the concentrations of phosphate buffer solution (pH 7.5) and NAD+ are 0.1 mol L−1 and 5 mmol L−1, respectively; immobilization concentration of ADH is 10 U L−1. The determination range of ethanol is 2.0-15.0 g L−1 (F = 10.44C + 6.6002, r > 0.9958); its detection limit is 1.11 g L−1; and relative standard deviation is 1.9%. IE-EFCA method is applicable for the determination of the samples containing alcohol in medicine, industry and environment.  相似文献   

10.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

11.
A method for determination of metabisulfite and hydrosulfite in poultice and decolorant by isotachophoresis was developed. Metabisulfite and hydrosulfite are ionizable oxoanions of sulfur of similar character that can easily be oxidized to sulfates. To protect the analytes from oxidation the solid samples were dissolved in a 1% (w/v) solution of formaldehyde. Hydrosulfite and metabisulfite present in the samples were transformed by the reaction with formaldehyde to stable compounds, hydroxymethanesulfinate and hydroxymethanesulfonate that were determined isotachophoretically without any pretreatment except for sample filtering and degassing. A capillary of 0.4 mm i.d. and 100 mm effective length made of fluorinated ethylene-propylene copolymer was filled with an electrolyte system consisting of 10 mmol L−1 HCl + 11 mmol L−1 imidazole, 0.15% (w/v) hydroxyethylcellulose, pH 6.0 (leading electrolyte) and 5 mmol L−1 benzoic acid + 6 mmol L−1 imidazole, pH 6.5 (terminating electrolyte). Separation was performed at a driving current of 80 μA and for detection current was decreased to 30 μA. Using contactless conductivity detection, the calibration curves in the tested concentration range up to 2.5 mmol L−1 were linear for both metabisulfite and hydrosulfite complexes. The concentration detection limits for metabisulfite and hydrosulfite were 2.9 and 3.4 μmol L−1, respectively. For 1 mmol L−1 concentration, values of R.S.D. (n = 6) were 2.6% for hydrosulfite and 0.8% for metabisulfite. Isotachophoretic determination took about 20 min. The elaborated isotachophoretic procedure is simple to perform, sufficiently sensitive and accurate. In addition to this, low cost of analyses makes the method an alternative procedure to methods used so far for the determination of oxoanions of sulfur.  相似文献   

12.
A sequential injection analysis (SIA) using lab-on-valve with air segmentation and spectrophotometric detection was designed for copper(II) determination. It is based on the reaction of copper(II) and 2-carboxy-2′-hydroxy-5′-sulfoformazyl benzene (Zincon) in a weak alkaline solution between the air zones. Beer's Law was obeyed over the range of 0.1-2.0 mg L−1 copper(II) with a correlation coefficient 0.9985 and a slope of 0.2893 absorbance unit/mg L−1. The relative standard deviation was 2.0% for a series of 10 measurements of 0.5 mg L−1 copper(II) solution. The detection limit (3 S/N) and the limit of quantification (LOQ) were 0.05 and 0.17 mg L−1 respectively. This method has been successfully applied to determination of copper(II) in wastewater with a sample throughput of 120 h−1. The method is superior to the batchwise method in that it provides fully automation, rapidity, less reagents and sample consumption with little waste generation.  相似文献   

13.
Alexandra Sixto 《Talanta》2009,77(4):1534-1538
A new automated method for the determination of glucose in honey is proposed. The method is based on multicommutated flow analysis (MCFA) and employs an immobilized glucose oxidase reactor and spectrophotometric detection at 505 nm of the red quinoneimine formed (Trinder's method).The calibration curve obeyed a second order equation in the range 0-0.14 g L−1 (h = −2.2199 C2 + 1.3741C + 0.0077, r2 = 0.9991, where h is the peak height (absorbance) and C the concentration in g L−1). The method was validated analyzing eight commercial samples, both by the AOAC 954.11 and 977.20 official methods. According to Student's t-test of mean values, at the confidence level of 95% the results obtained with the proposed method were in agreement with those obtained by the official methods. Precision (sr(%), n = 10) was 3% and the sampling frequency of the system was 20 samples h−1.  相似文献   

14.
The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L−1 tris(hydroxymethyl)aminomethane and 30 mmol L−1 2-hydroxyisobutyric acid, at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 μm I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Wflush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R2 > 0.9999); limit of detection of 0.5 mg L−1; inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1–104.5%.  相似文献   

15.
A simple and rapid method was proposed for humic substances (HS) determination at microgram levels in natural waters. This assay method is based on the binding of a dye, Toluidine Blue (TB), to HS molecules to produce a dye-HS complex, which causes a decrease in absorbance at 630 nm. This method was calibrated with HS samples with up to a concentration of 40 mg L−1, which covered the range of dissolved HS concentrations present in natural waters. The detection limit was 0.8 mg L−1 of HS, and the relative standard deviation of 10 replicate measurements for a 20-mg L−1 standard sample was 3.5%. From the Langmuir adsorption isotherm theory, the binding equilibrium constant and total number of binding sites at neutral pH were calculated to be (8.17 ± 0.42) × 105 L mol−1 and N of 1.45 ± 0.04 mmol g−1 HS, respectively. The determination results with five water samples from lake, river and pond were consistent with those measured with the reference methods, demonstrating that this quantification method for HS determination was rapid, sensitive and feasible.  相似文献   

16.
This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L−1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 μmol L−1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L−1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 °C) or diluted. The method showed no interference of Cl (0.2-1.3 mmol L−1), NO3 (0.3-1.0 mmol L−1), Fe3+ (0.2-1.2 mmol L−1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L−1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation.  相似文献   

17.
A novel biosensor for determination of d-amino acids (DAAs) in biological samples by using an electrode based on immobilization of a thermostable d-Proline dehydrogenase (d-Pro DH) within an agar gel membrane was developed. The electrode was simply prepared by spin-coating the agar solution with the d-Pro DH on a glassy carbon (GC) electrode.An electrocatalytic oxidation current of 2,6-dichloroindophenol (DCIP) was observed at −100 mV vs. Ag/AgCl with the addition of 5 and 20 mmol L−1d-proline. The current response and its relative standard deviation were 0.15 μA and 7.6% (n = 3), respectively, when it was measured in a pH 8.0 phosphate buffer solution containing 10 mmol L−1d-proline and 0.5 mmol L−1 DCIP at 50 °C. The current response of d-proline increased with increase of the temperature of the sample solution up to 70 °C. The electrocatalytic response at the d-Pro DH/agar immobilized electrode subsequently maintained for 80 days. Finally, the d-Pro DH/agar immobilized electrode was applied to determination of DAAs in a human urine sample. The determined value of DAAs in the human urine and its R.S.D. were 1.39 ± 0.12 mmol L−1 and 8.9% (n = 3), respectively.  相似文献   

18.
A highly selective and simple flow injection method is reported for the determination of Au(III) in jewel samples. The method is based on the catalytic effect of Au(III) on the oxidation of 4-amino-4′-methoxydiphenylamine hydrochloride (Variamine Blue B base, VB) by KIO3. The colored reaction product was monitored spectrophotometrically at 546 nm. A volume fraction of 40% N,N-dimethylformamide (DMF) greatly enhances the selectivity of the method. The chemical (pH and concentrations of reagents) and instrumental variables (sample injection volume, reagents flow rates, reaction coil length) affecting the determination were studied and optimized. Under the selected values, the analyte could be determined in the range of 0.1-12.0 mg L−1 (r = 0.9997), at a sampling rate of 120 h−1. The proposed assay was precise (sr = 0.8% at 5.0 mg L−1 Au(III), n = 12) and adequately sensitive with a 3σ limit of detection of 0.03 mg L−1. The method was successfully applied to the analysis of jewel samples. The obtained results were favorably compared to flame atomic absorption spectrometry (FAAS) used as a reference method.  相似文献   

19.
A simple and fast reaction between 12-molybdophosphate heteropoly anion and the polymethine dye Astra Phloxine was used for the development of a new SIA method for the determination of orthophosphate. The suggested method has higher sensitivity and a broader calibration range than existing SIA methods. It can be used to detect phosphate in the range from 0.2 to 10 μmol L−1 with a detection limit of 0.1 μmol L−1 and an acceptable throughput of 20 samples h−1. The comparably low molybdate (5.6 mmol L−1) and dye (0.1 mmol L−1) concentrations led to an improvement in the stability of the base line. Inter-day reproducibility was better than 5%, while the intra-day RSD was in the range 0.8-3.5%. The method was used for the analysis of natural water samples and phosphorus-containing chemicals having a low content of orthophosphate.  相似文献   

20.
A simple, specific and sensitive sequential injection analysis (SIA) system based on non-immunoassay fluorescent detection has been developed for the determination of urinary albumin. The specific binding of the dye Albumin Blue 580 (AB 580) to albumin in urine generated high emission fluorescent signals. The excitation and emission wavelengths were set at 590 and 610 nm, respectively. The analytical range was obtained from 1 to 100 mg L−1, with a detection limit of 0.3 mg L−1 (S/N = 3). The SIA system gave high precision with relative standard deviations (R.S.D.s) of 0.9% and 1.4% when evaluated with 15 and 100 mg L−1 albumin (n = 15), respectively. The method exhibited good reproducibility, as assessed by performing four analytical curves on different days, and intra-run CVs (2.3-3.3%) and inter-run CVs (3.8%) were obtained. Rapid operation was achieved with a sample throughput of 37 h−1. This method was successfully applied to the determination of urinary albumin, and the method was highly correlated with the immunoturbidimetric method (r2 = 0.965; n = 72).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号