首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

2.
Erdem A  Eroğlu AE 《Talanta》2005,68(1):86-92
A selective matrix removal/separation/enrichment method, utilizing a microcolumn of a chelating resin with SH functional groups (Duolite GT-73), was proposed for the determination of Sb(III) in waters by segmented flow injection-hydride generation atomic absorption spectrometry (SFI-HGAAS). The resin was selective to Sb(III) at almost all pH and acidity values employed, whereas Sb(V) was not retained at all and could be determined after a pre-reduction step with l-cysteine. Spike recoveries were tested at various concentration levels in different water types and were found to vary between 85 and 118%. Accuracy of the proposed methodology was checked by analyzing a standard reference material and a good correlation was found between the determined (13.3 ± 1.1 μg l−1) and the certified value (13.79 ± 0.42 μg l−1). The method was applied to several bottled drinking water samples for antimony determination with and without preconcentration and none of the samples were found to contain antimony above the permissible level (5 μg l−1). The characteristic concentration (the concentration of the analyte corresponding to an absorbance of 0.0044) was 0.55 μg l−1 and the 3 s limit of detection (LOD) based on five times preconcentration was 0.06 μg l−1. The applicability of the microcolumn separation/preconcentration/matrix removal method for flow injection systems was also demonstrated.  相似文献   

3.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

4.
A flow injection on-line sorption preconcentration system has been synchronously coupled to an electrothermal atomic absorption spectrometry (ETAAS) system for the selective determination of trace amounts of Sb(III) in water, soil and plant. The determination was achieved by selective complexation and sorption of Sb(III) with [1,5-bis(2-pyridyl)-3-sulphophenyl methylene thiocarbonohydarzide (PSTH) immobilized on an anion-exchange resin (Dowex 1× 8-200)] at a wide range of pH, quantitative elution with 50 μl of 2 M HNO3 and subsequent ETAAS detection. ETAAS determination of the analyte was performed in parallel with the preconcentration of the next sample. Using a preconcentration time of 60 s and a sample loading flow rate of 2.8 ml min−1, an enhancement factor of 12 was obtained in comparison with direct injection of 50 μl aqueous solution, resulting in a sampling frequency of 31 samples h−1. The detection limit (3 s) was 2 μg l−1 and the precision was 3.1% (R.S.D.) for 11 replicate determinations at 10 μg l−1. The accuracy of the proposed method was demonstrated by analyzing one certified sample and different spiked samples.  相似文献   

5.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

6.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

7.
A system for on-line preconcentration and determination of platinum by ultrasonic nebulization (USN) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) was studied. It is based on the chemical sorption of platinum on a column packed with polyurethane foam loaded with thiocyanate reagent. The optimization step was carried out using two level full factorial design. Three variables (pH, loading flow rate (LFR) and eluent concentration) were regarded as factors in the optimization. Results of the two level factorial design 23 with three replicates of the central point for platinum preconcentration, based on the variance analysis (ANOVA), demonstrated that the factors and their interactions are not statistically significant. The proposed procedure allowed the determination of platinum with a detection limit of 0.28 μg l−1. The precision for 10 replicate determinations at 10.0 μg l−1 Pt level was 3.8% relative standard deviation (R.S.D.), calculated from the peak heights obtained. A total enhancement factor of 100 was obtained with respect to ICP-OES using pneumatic nebulization (10 for USN and 10 for preconcentration). A sampling frequency of 50 samples per hour was obtained. The effect of other ions in concentrations agreeing with water samples was studied. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for platinum determination in spiked water samples.  相似文献   

8.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

9.
A chitosan resin derivatized with N-methyl-d-glucamine (CCTS-NMDG) was synthesized by using a cross-linked chitosan (CCTS) as base material. The N-methyl-d-glucamine (NMDG) moiety was attached to the amino group of CCTS through the arm of chloromethyloxirane. The adsorption behavior of 59 elements on the synthesized resin was systematically examined by using the resin packed in a mini-column, passing water samples through it and measuring the adsorbed elements in eluates by ICP-MS. The CCTS-NMDG resin shows high ability in boron sorption with the capacity of 0.61 mmol ml−1 (= 2.1 mmol g−1). The sorption kinetics of this resin was faster than that of the commercially available resins. Other advantages of the synthesized resin are: (1) quantitative collection of boron at neutral pH regions; (2) complete removal of large amounts of matrices; (3) no loss of efficiency over prolonged usage; (4) effective collection of boron in wide range concentration using a mini column containing 1 ml resin; (5) complete elution of boron with 1 mol l−1 nitric acid. The resin was applied to the collection/concentration of boron in water samples. Boron in tap water and river water was found to be in the range of 6-8 μg l−1. The limit of detection (LOD) of boron after pretreatment with CCTS-NMDG resin and measurement by ICP-MS was 0.07 μg l−1 and the limit of quantification (LOQ) was 0.14 μg l−1 when the volume of each sample and eluent was 10 ml.  相似文献   

10.
Liu Y  Chang X  Wang S  Guo Y  Din B  Meng S 《Talanta》2004,64(1):160-166
A highly sensitive and selective solid-phase spectrophotometric method for the determination of sub-μg l−1 level nickel(II) is described. Nickel(II) was sorbed on a styrene-divinylbenzene-type resin Amberlite XAD-4 as a Ni(II)-o-carboxylphenyldiazoaminoazobenzene (o-CDAA) complex. At pH 9.0, resin phase absorbances at 588 and 800 nm were measured directly with an apparent molar absorptivity of 2.95×107 g mol−1 cm−1. The linear range of the determination was 1.2-41 μg g−1 resin. The detection limit and the quantification limit were found to be 0.24 and 0.76 μg g−1 resin, respectively. The relative standard deviation of 10 replicate determinations of 1.0 μg nickel(II) in 100 ml sample was of 1.5%. The tolerance limit of coexistent ions was also investigated. Most of them are in tolerable amount. For practical analyses, 1 ml acetylacetone used can eliminate the interferences caused by Cu and Fe. The procedure was validated by analysis a certified water reference material (GBW 08618 Beijing, China) and a tomato leaf certified reference material (GBW 08402 Beijing, China) with the results in agreement with the certified values. The method was applied to the determination of nickel(II) in water and vegetable samples with satisfactory results.  相似文献   

11.
An optical chemical sensor based on immobilization of 2-(5-bromo-2-pyridylazo)-5-(diethylamino)phenol (Br-PADAP) in Nafion membrane is described. The membranes were cast onto glass substrates and were used for the determination of nickel in aqueous solutions by spectrophotometry. The sensor system is highly transparent, mechanically stable and showed no evidence of reagent leaching. The influence of several parameters such as pH, ligand concentration, and type and concentration of regenerating solution were optimized. The sensor system showed good sensitivity in the range 0.5-20 μg ml−1 with a detection limit of 0.3 μg ml−1 Ni(II). The sensor has been incorporated into a home-made flow-through cell for determination of nickel in flowing streams with improved sensitivity, precision and detection limit. The calibration curve in the flow system was linear in the range 0.1-16 μg ml−1 with a detection limit of 0.07 μg ml−1. The sensor is easily regenerated by dilute nitric acid solution. The proposed method was successfully applied to the determination of nickel content in vegetable oil and chocolate samples and the results were compared with those obtained using atomic absorption spectrometry.  相似文献   

12.
Sawula GM 《Talanta》2004,64(1):80-86
Microcolumns containing 8-hydroxyquinoline azo-immobilized on controlled pore glass were incorporated in a field sampler for on-site collection, isolation and preconcentration of trace metal ions in waters of the Okavango Delta, Botswana. Sequestered trace metal ions were recovered by elution with 0.5 ml of 1.5 M nitric acid, and determined by graphite furnace atomic absorption spectrometry (GFAAS). This sampling and enrichment method minimizes sample contamination, and collection of large volumes of water samples for transporting, over long distances, to analytical laboratories is avoided.Data reported comprise one of the initial surveys on trace metal ion concentrations in waters of the Okavango Delta, Botswana. In waters with more efficient mixing, dissolved metal ion concentrations found were generally low with slightly elevated levels of manganese (7-19 μg l−1), zinc (2.7-4.8 μg l−1), nickel (0.2-2.5 μg l−1) and copper (0.3-2.1 μg l−1). For each trace metal ion, concentration levels seem to reflect zones of varying water conveyance, and show no obvious temporal and spatial variations apart from a slight increment from the inlet in the upper Delta to the outlets in the lower Delta.  相似文献   

13.
Dos Santos LB  Abate G  Masini JC 《Talanta》2004,62(4):667-674
This paper presents the optimization of instrumental and solution parameters for determination of atrazine in river waters and formulation by square wave voltammetry (SWV) using a hanging mercury drop electrode. The best sensitivity (35.2±0.4 μA ml μg−1) was achieved using a frequency of 400 Hz and a medium composed of 40 mmol l−1 Britton-Robinson (BR) buffer at pH 1.9. The detection limit was 2 μg l−1 with a linear dynamic range between 10 and 250 μg l−1. Application of the method to real samples of river waters fortified with 10 μg l−1 of atrazine resulted recoveries between 92 and 116%. Additionally, good agreement was observed between results obtained by the proposed method and by HPLC for river water samples spiked with 25 μg l−1 of atrazine. The determination was not affected by the presence of humic acid at concentration of 5 mg l−1, indicating that interactions of the herbicide with this class of compounds are fully labile. The stability of the voltammetric signal for samples spiked with 250 μg l−1 atrazine was evaluated over a period of 14 days in four samples. For two samples, no systematic variation was observed, while for the other two, a decrease of peak current between 3 and 15% occurred, suggesting that the stability is dependent on the sample nature. HPLC analyses suggest formation of deethylatrazine during the second week of storage in the samples for which the SWV peak current had the more intense decrease.  相似文献   

14.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

15.
Hong Wu  Yan Jin  Shuping Bi 《Talanta》2007,71(4):1762-1768
The existence of dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in some environmental samples can cause serious interference on Se(IV) determination by hydride generation atomic fluorescence spectrometry (HG-AFS) due to their contribution on HG-response. A flow injection separation and preconcentration system coupled to HG-AFS was therefore developed by on-line coprecipitation in a knotted reactor (KR) for eliminating interference subjected from organoselenium. The sample, spiked with lanthanum nitrate, was merged with an ammonium buffer solution (pH 8.8), which promoted coprecipitation of Se(IV) and quantitative collection by 150 cm PTFE KR. DMSe and DMDSe, however, were unretained and expelled from the KR. An air flow was introduced to remove the residual solution from the KR, then a 1.2 mol l−1 HCl was pumped to dissolve the precipitates and merge with KBH4 solution for HG-AFS detection. The interference of DMSe and DMDSe on the Se(IV) determination by conventional HG-AFS and its elimination by the developed separation and preconcentration system were evaluated. With optimal experimental conditions and with a sample consumption of 12.0 ml, an enhancement factor of 18 was obtained at a sample frequency of 24 h−1. The limit of detection was 0.014 μg l−1 and the precision (R.S.D.) for 11 replicate measurements of 1.0 μg l−1 Se(IV) was 2.5%. The developed method was successfully applied to the determination of inorganic selenium species in a variety of natural water samples.  相似文献   

16.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

17.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

18.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

19.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

20.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号