首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim BH  Lee CS  Shim JH  Hong HP  Cha GS  Jun YM  Nam H 《Talanta》2003,61(3):393-401
Four ionophores containing bipyridyl groups on a 7-deoxycholic amide derivative scaffold were designed and synthesized. Potentiometric evaluation of the Poly(vinyl chloride) (PVC) membranes containing those deoxycholic amides bearing bipyridyl moieties with a short linkage showed good affinity to silver(I) ion over alkali, alkaline earth and other transition metal cations. However, two bipyridyl groups flexibly linked to the deoxycholic frame through a long linkage do not result in appreciable potentiometric responses.  相似文献   

2.
The reaction of 4-amino-5-ethyl-2H-1,2,4-triazole-3(4H)-thione (AETT, L1) with 2-thiophen carbaldehyde in methanol leads to the corresponding Schiff-base HL1a. The reaction of L1 with AgNO3 in ethanol gives the ionic complex [{[Ag(L1)]NO3}2]n (1). The ionic complex [(PPh3)2Ag(HL1a)2]NO3 · CH3CN (2) can be obtained by the reaction of HL1a with [(PPh3)2Ag]NO3 in methanol and acetonitrile solution, while its reaction with [(PPh3)2PdCl2] in the presence of sodium acetate in methanol leads to the neutral complex [(PPh3)2Pd(L1a)2] · 4MeOH (3). All the compounds were characterized by infrared spectroscopy, elemental analyses as well as by X-ray diffraction studies.  相似文献   

3.
Abstract

The thermodynamic parameters for the complex formation reactions in dimethylsulfoxide (dmso) between Ag(I) and the following polyamines: N,N′-dimethylethylenediamine (dmen), N,N,N′,N′-tetramethylethylenediamine (dmen), N,N″-dimethyl-diethylenetriamine (dmdien) and N,N,N′,N″, N″-pentamethyldiethylenetriamine (pmdien) have been determined by potentiometric and calorimetric techniques at 298 K and 0.1 mol dm?3 ionic strength (NEt4ClO4). Only mononuclear complexes are formed (AgLj + j = 1,2) where the ligands act prevalently as chelate agents. All the complexes are enthalpy stabilized whereas the entropy changes counteract the complex formation. The results are discussed in terms of different basicities and steric requirements of both the ligands and the complexes formed.  相似文献   

4.
Nitrosation of 2-chlorophenyl acetonitrile with t-butylnitrite under basic conditions (Meyer reaction) resulted in a high-yield preparation of the first substituted arylcyanoxime, 2-chlorophenyl(oximino)acetonitrile, H(2Cl–PhCO) (HL). The obtained cyanoxime is readily deprotonated in solution by metal hydroxides or carbonates with the formation of yellow sodium, tetrabutylammonium, thallium(I) and silver(I) derivatives. The crystal structure of the Tl(I) complex was determined. Thallium(I) salt (TlL) crystallizes in the monoclinic space group P21 n with a?=?3.8382(7), b?=?11.0065(18), c?=?20.901(4)?Å, and β?=?92.447(3)°, V?=?882.2(3) Å3, Z?=?4; T?=?193?K (Mo?Kα radiation). The structure was solved by direct methods to a final R of 0.0689 (wR2?=?0.1650) for I?>?2σ(I). The crystal structure of the complex is a one-dimensional coordination polymer that consists of centrosymmetric [TlL]2 dimers in which Tl2O2 rhombohedra are connected to each other at 90.72°. The crystal structure of TlL is an interesting example of the ruffled metal-organic network composed of Tl–O–Tl–O zigzag chains with close (3.838?Å) intermetallic distances comparable to those in metallic thallium (3.42?Å). The cyanoxime anion bridges metal centers and acts as a tridentate ligand where oxygen atoms of the oxime group bond to three different Tl(I) cations with three different bond lengths.  相似文献   

5.
Two new PVC membrane electrodes that are highly selective to Ag(I) ions were prepared using (L1) calyx[4]arene (L2) as two suitable neutral carriers. The silver(I) ion selective electrodes exhibit a good response for silver ion over a wide concentration range of 1.0 × 10−1 to 4.2 × 10−6 M (L1) and 1.0 × 10−1 to 6.5 × 10−6 M (L2) with a Nernstian slope of 60 mV per decade (L1) and 58 mV per decade (L2) at 25°C, and was found to be very selective, precise, and usable within the pH range 4.0–8.0. They have a response time of <15 s and can be used for at least 3 months without any measurable divergence in potential. The proposed sensors show a fairly good discriminating ability towards Ag+ ion in comparison to some hard and soft metal ions. The electrodes were used as indicator electrodes in the potentiometric titration of silver ion and in the determination of Ag+ in photographic emulsion and radiographic and photographic films. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 862–868. The article is published in the original.  相似文献   

6.
Ag(I) and Au(I) efficiently catalyze the cycloisomerization of terminal alkynoic acids into methylene seven-membered ring lactones. Depending on the metal, divergent reaction pathways were found for non terminal alkynoic acids. While Ag(I) led to lactones, Au(I) led to 2H-chromenes coming from the hydroarylation of the alkyne.  相似文献   

7.
The thermodynamic functions of the complexation of Ag(I) by the tripodal ligands, tris(2-(methylamino)ethyl)amine (Me3tren) and tris(2-(dimethylamino)ethyl)amine (Me6tren) (L), are determined in dimethyl sulfoxide (DMSO) by potentiometric and calorimetric techniques at 298.0 K and 0.1 mol⋅dm−3 ionic strength (Et4NClO4). A comparison is made between previous data concerning Ag(I) complex formation with the non-alkylated tripodal 2,2′,2″-triaminotriethylamine (tren), in order to analyze the influence of N-methylation on this type of branched donor, and with those relative to the linear triethylenetetramine (trien) and 1,1,4,7,10,10-hexamethyltriethylenetetramine (Me6trien). The results are discussed taking into account different σ-donating properties, geometric arrangement of the ligands, steric repulsions and solvation effects.  相似文献   

8.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

9.
The reaction of 4-amino-6-methyl-1,2,4-triazine-3(2 H)-thione-5-one (AMTTO) with silver(I) nitrate in methanol gives the complex [Ag(AMTTO)2]NO3 ( 1 ). 1 was characterized by IR and 13C NMR spectroscopy and by an X-ray structure analysis [space group C2/c, Z = 4, lattice dimensions at –80 °C: a = 1306.7(2), b = 1139.0(2), c = 1089.2(1) pm, β = 94.54(1)°, R1 = 0.0294]. The cation possesses a highly distorted linear coordination sphere in the solid state.  相似文献   

10.
11.
Saran L  Cavalheiro E  Neves EA 《Talanta》1995,42(12):2027-2032
The highly neutralized ethylenediaminetetraacetate (EDTA) titrant (95–99% as Y4− anion) precipitates with Ag+ cations to form the Ag4Y species, in aqueous medium, which is well characterized from conductometric titration, thermal analysis and potentiometric titration of the silver content of the solid. The precipitate dissolves in excess Y4− to form a complex, AgY3−. Equilibrium studies at 25°C and ionic strength 0.50 M (NaNO3) have shown from solubility and potentiometric measurements that the formation constant (95% confidence level) β1 = (1.93 ± 0.07) × 105 M−1 and the solubility products are KS0 = [Ag +]4[Y4−] = (9.0 ± 0.4) × 10−18 M5 and KS1 = [Ag +]3[AgY3−] = (1.74 ± 0.08) × 10−12 M4. The presence of Na+, rather than ionic strength, markedly affects the equilibrium; the data at ionic strength 0.10 M are: β1 = (1.19 ± 0.03) × 106 M−1, KS0 = (1.6 ± 0.4) × 10−19 M5 and KS1 = (1.9 ± 0.5) × 10−13 M4; at ionic strength tending to zero; β1 = (1.82 ± 0.05) × 107 M−1, KS0 = (2.6 ± 0.8) × 10−22 M5 and KS1 = (5 ± 1) × 10−15 M4. The intrinsic solubility is 2.03 mM silver (I) in 0.50 M NaNO3. Well-defined potentiometric titration curves can be taken in the range 1–2 mM with the Ag indicator electrode. Thermal analysis revealed from differential scanning calorimetry a sharp exothermic peak at 142°C; thermal gravimetry/differential thermal gravimetry has shown mass loss due to silver formation and a brown residue, a water-soluble polymeric acid (decomposition range 135–157°C), tending to pure silver at 600°C, consistent with the original Ag4Y salt.  相似文献   

12.
The reactions between five ferrocenyl derivatives containing both a CO and at least an imidazole or pyridine nitrogen atom and AgPF6, AgOTf, or [Cu(NCCH3)4]PF6 precursors were studied. The ligand {[bis(2-pyridyl)amino]carbonyl}ferrocene (L3), derived from (2-pyridyl)amine, favored tetrahedral coordination of Ag+ (with two ligands) and of Cu+ (with two acetonitrile ligands left from the precursor). In all the other ligands, both metal centers coordinated linearly to two ligands, preferring the imidazole or pyridinic nitrogen to other nitrogen atoms (amine) or oxygen donors.When the counter anions were triflate, the crystal structure showed a dimerization of the complex, with the ferrocenyl moieties occupying cis positions, by means of a weak Ag?Ag interaction. This was shown experimentally in the crystal structure of complex [Ag(L1)2]OTf (L1 = ferrocenyl imidazole) and in the presence of peaks corresponding to {Ag2(L2)3(OTf)}+ and {Ag2(L2)4(OTf)}+ in the mass spectra of [Ag(L2)2]OTf (L2 = ferrocenyl benzimidazole). In all complexes containing PF6, there was no evidence for dimerization. Indeed, in the crystal structure of [Ag(L2)2]PF6, the ferrocenyl moieties occupy trans positions and the metal centers are far from each other. DFT calculations showed that the energy of the cis and trans conformers is practically the same and the balance of crystal packing forces leads to dimerization when triflate is present.  相似文献   

13.
Summary.  The self-assembly of Ag[BF4] with trans-azobenzene in dichloromethane yields a new coordination polymer ([Ag(μ-trans-azobenzene)H2O][BF4])n which was characterized by X-ray single crystal diffraction. The crystal consists of 1-D zigzag cationic chains made up from [Ag(H2O)]+ units linked by trans-azobenzene bridges and BF 4 anions. Hydrogen bonding interactions between the chains and BF 4 anions occur via intermolecular C*H⋯F and O*H⋯F contacts, and the crystal displays a 2-D supramolecular structure. Received May 31, 2000. Accepted June 30, 2000  相似文献   

14.
In this paper we discuss the preparation and comparative evaluation of silver (I) [Ag(I)] nonwoven and woven antimicrobial barrier fabrics generated from commercial calcium‐sodium alginates and laboratory prepared sodium carboxymethyl (CM) cotton nonwovens and CM‐cotton printcloth for potential use as wound dressings. Degrees of CM substitution (DS) in cotton nonwoven and printcloth samples by titrimetry were 0.38 and 0.10, respectively. Coordination of Ag(I) with carboxylates on fabrics was effected by ion exchange and nitrates were removed by washing to mitigate nitrate ion toxicity issues. Durability of silver coordinated fabrics was tested by soaking them in deionized water with slight agitation at 50°C. Ag(I) alginates and nonwoven Ag(I)‐CM‐cottons lost structural integrity in water. Ag‐CM‐cotton printcloth samples retained structural integrity even after four soak‐and‐dry cycles, were smooth to the touch when dry, and were smoother when moistened. They could be easily peeled from wound surfaces without inducing trauma. Solid‐state carbon‐13 (13C) nuclear magnetic resonance (NMR) spectrometry was used to observe changes in carbonyl resonances in Ag(I) alginates and Ag(I)‐CM‐printcloth, and the chemical shift positions of carbonyl resonances of uncoordinated and Ag(I) coordinated fabrics did not change. Inductively coupled plasma‐mass spectrometry (ICP‐MS) was used following fabric digestion to determine the total Ag(I) ion content in fabrics. Ag(I) alginates were found to hold about 10–50 mg Ag(I) per gram fabric; and Ag(I) cotton woven and nonwoven fabrics held about 5–10 mg Ag(I) ions per gram fabric. Kinetic release of Ag(I) after soaking once in physiological saline was studied with ICP‐MS to estimate the availability of Ag(I) upon a single exchange with Na(I) ions on wound surfaces. Alginates released between ~13 and 28% of coordinated Ag(I), and CM‐cotton nonwovens and CM‐cotton printcloth released ~14 and 3% of coordinated Ag(I) ions, respectively. Finally, Ag(I) alginates and Ag(I)‐CM‐cotton printcloth samples were evaluated against Gram‐positive Staphylococcus aureus and Gram‐negative Klebsiella pneumoniae. Ag(I) alginates suppressed 99.95% of bacterial growth in vitro. Even after four soak‐and‐dry cycles in deionized water Ag(I)‐CM‐cotton printcloth suppressed 99.99% of bacterial growth in vitro. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

15.
The alkyl chain-linked diimidazolium (or dibenzimidazolium) salts, 1,1′-diethyl-4,4′-tetramethylene-diimidazolium-diiodide (L1H2·I2) and 1,1′-diethyl-3,3′-trimethylene-dibenzimidazolium-diiodide (L2H2·I2), and their silver(I) and copper(II) coordination polymers, [L1AgI]n (1) and [L2Cu2I4]n (2), have been prepared and characterized. Complex 1 is a 1D helical polymer generated by bidentated carbene ligands (L1) and Ag(I) atoms. The 1D polymer of 2 is formed by bidentated carbene ligands (L2) and coplanar quadrilateral Cu2I2 units. 3D supramolecular frameworks in the crystal packings of 1 and 2 are formed via intermolecular weak interactions, including C–H···π contacts, ππ interactions and C–H···I hydrogen bonds.  相似文献   

16.
Complex formation and stability constants between silver(I) and monoaza-12-crown, monoaza-15-crown, and monoaza-18-crown ethers with anthraquinone were determined in acetonitrile, methanol, and propylene carbonate by potentiometric and UV-spectrophotometric methods. Complexes of 1?:?1 and 1?:?2 metal-to-ligand stoichiometry were formed. The solvent composition and the size of the macrocyclic ring affect the stability constants of the complexes. The energetically most favorable structures of the 1?:?1 metal-to-ligand complexes were calculated and visualized by the AM1d method at a semiempirical level of theory.  相似文献   

17.
The use of dimeric [RhCl(CO)2]2 as acceptor unit in the construction of mono-, bi- and three-dimensional metallosupramolecular structures is reported.The reaction of the dimer with the alkynylgold complex [Au(CCC5H4N)(CNC6H4O(O)CC6H4OC10H21)] resulted in the mononuclear rhodium complex 1, through an unexpected transfer of the isonitrile ligand from the gold to the rhodium centres.The reaction of the linear unit [RhCl(CO)2]2(μ-4,4′-bipy) (3) with the diphosphine 1,4-bis(diphenylphosphino)butane (dppb) yielded the simultaneous formation of both metallomacrocycles [RhCl(CO)(dppb)]2 (4) and {[RhCl(CO)]2(μ-4,4′-bipy)}2(μ-dppb)2 (5). The use of a diphosphine with smaller bite angle, 1,1′-bis-(diphenylphosphino)methane, (dppm) formed the three-dimensional {[RhCl(CO)]2(μ-4,4′-bipy)}2(μ-dppm)4 complex (6) that incorporates four diphosphine units connecting two [RhCl(CO)2]2(μ-bipy) linear edges. PM3 semi-empirical method has been used to calculate the optimised geometry of compound 6.  相似文献   

18.
An efficient and convenient method was developed for the preparation of 2-benzenesulfonothiol-HKAs via a silver(I)-mediated direct sulfenylation of heterocyclic ketene aminals (HKAs). The method involves a variety of functionalized substrates, leading to α-arylthioyl HKAs in a mild, easy operation, and mild reaction conditions.  相似文献   

19.
Since ancient times, silver ions have been known to be effective against a broad range of micro-organisms but in the last decade, this metal has been greatly studied because of their antimicrobial capability against a wide range of bacteria, viruses, and fungi. For the same reason, it is the most extensively studied metal with antibacterial applications in medicine. Besides applications, the antimicrobial activity is associated with high effectiveness, low toxicity, and virtually no resistance of micro-organisms to the presence of this metal. The appearance of new bacterial strains resistant to antibiotics is a serious health problem; so, there is a strong incentive to develop new bactericides. This makes current research in bactericidal silver complexes particularly important. This review summarizes the most important aspect related to coordination chemistry of Ag(I) carboxylate complexes and their influence as antibacterial agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号