首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang AJ  Xu JJ  Zhang Q  Chen HY 《Talanta》2006,69(1):210-215
Poly(dimethylsiloxane) (PDMS) microfluidic channels modified by citrate-stabilized gold nanoparticles after coating a layer of linear polyethylenimine (LPEI) were successfully used to separate dopamine and epinephrine, which were difficult to be separated from baseline in native and hybrid PDMS microchannels. In-channel amperometric detection with a single carbon fibre cylindrical electrode was employed. Experimental parameters of separation and detection processes were optimized in detail. The analytes were well separated within 100 s in a 3.7 cm long separation channel at a separation voltage of +800 V using a 30 mM phosphate buffer solution (PBS, pH 7.0). Linear responses of them were obtained both from 25 to 600 μM with detection limits of 2 μM for dopamine and 5 μM for epinephrine, respectively. The modified PDMS channels have a long-term stability and an excellent reproducibility within 2 weeks.  相似文献   

2.
Lan Zhang  Jinfeng Chen  Yu He  Guonan Chen 《Talanta》2009,77(3):1002-2154
A simple, rapid and low-costing new mixed surfactant MEKC method has been developed for the analysis of five neutral anabolic steroids in this paper. It was found that the bile salt coupling with Triton X-100 was a suitable bi-micellar surfactant for the separation of these anabolic steroids with similar structure. The separation conditions were optimized in detail. The five natural and synthetic anabolic steroids, such as androstenedione (AD), 19-norandrostenedione (NAD), 1,4-androstadiene-3,17-dione (ADD), methandrostenolone (MA) and methyltestosterone (MT) were separated and detected in an alkaline buffer system (pH 9.0) containing 15 mM Britton-Robinson (BR) buffer, 50 mM sodium cholate (SC) and 0.1% (v/v) Triton X-100 with detection wavelength at 241 nm and 18 kV of separation voltage. Under the optimal conditions, five coexistence neutral steroids were completely separated within 12 min with the detection limits ranged from 0.20 to 0.51 μg/mL. This method was successfully used for detection and confirmation of the anabolic steroid methandrostenolone in methandrostenolone tablets and in the real human urine, GC-MS method was applied to confirm the free methandrostenolone existence in the urine sample in order to validate the reliability of MEKC method.  相似文献   

3.
Bingyan Han 《Talanta》2009,79(3):959-962
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB), for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine B (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance. Furthermore, PY and RB were separated successfully on a PDMS microchip at the appropriate conditions with DDAB.  相似文献   

4.
The application of the cloud point extraction (CPE) technique for capillary electrophoresis (CE) determination of metal ions was demonstrated using Cu(II) and Co(II) as model metal ions. The preconcentration of Cu(II) and Co(II) in aqueous solution was achieved by CPE with 1-(2-pyridylazo)-2-naphthol (PAN) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the PAN chelates of Cu(II) and Co(II) was realized by CE with a photodiaode array detector in a  μm i.d. fused-silica capillary at 17 kV. A 50 mM NH4Ac buffer solution (pH 8.0) containing 0.2 mM of PAN in 80% (v/v) of acetonitrile and 20% (v/v) doubly deionized water (DDW) was used as the separation medium to avoid the adsorption of hydrophobic substances and nonionic surfactant Triton X-114 onto the inner surface of the separation capillary, ensuring the separation efficiency and reproducibility. The precision (relative standard deviation (R.S.D.), n=5) for five replicate injections of a mixture of 20 μg/l of Co(II) and Cu(II) were 0.74 and 1.8% for the migration time, 3.1 and 0.64% for the peak area measurement, respectively. The apparent concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for CE separation and in the initial solution, was 15.9 for Co(II) and 16.3 for Cu(II). The linear concentration range was from 3 to 100 μg/l for both Co(II) and Cu(II). The detection limits of Co(II) and Cu(II) were 0.12 and 0.26 μg/l, respectively. The developed method was successfully applied to the determination of Co(II) and Cu(II) in tap water, snow water, and flavor wines.  相似文献   

5.
Ruecha N  Siangproh W  Chailapakul O 《Talanta》2011,84(5):1323-1328
In this work, the rapid detection of cholesterol using poly(dimethylsiloxane) microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, was developed. Direct amperometric detection for poly(dimethylsiloxane) (PDMS) microchip capillary electrophoresis was successfully applied to quantify cholesterol levels. Factors influencing the performance of the method (such as the concentration and pH value of buffer electrolyte, concentration of cholesterol oxidase enzyme (ChOx), effect of solvent on the cholesterol solubility, and interferences) were carefully investigated and optimized. The migration time of hydrogen peroxide, product of the reaction, was less than 100 s when using 40 mM phosphate buffer at pH 7.0 as the running buffer, a concentration of 0.68 U/mL of the ChOx, a separation voltage of +1.6 kV, an injection time of 20 s, and a detection potential of +0.5 V. PDMS microchip capillary electrophoresis showed linearity between 38.7 μg/dL (1 μM) and 270.6 mg/dL (7 mM) for the cholesterol standard; the detection limit was determined as 38.7 ng/dL (1 nM). To demonstrate the potential of this assay, the proposed method was applied to quantify cholesterol in bovine serum. The percentages of recoveries were assessed over the range of 98.9-101.8%. The sample throughput was found to be 60 samples per hour. Therefore, PDMS microchip capillary electrophoresis, based on the coupling of enzymatic assays and electrochemical detection, is very rapid, accurate and sensitive method for the determination of cholesterol levels.  相似文献   

6.
Yan Xiao 《Talanta》2007,72(4):1316-1321
The separation of three kinds of aminophenol isomers were achieved within 1 min in polyelectrolytes multilayers modified PDMS microchips by layer-by-layer assembly with electrochemical detection (EC). Two polyelectrolytes, poly(dially dimethyl ammonium chloride) (PDDA) and poly(sodium-4-styrene-sulfonate) (PSS) were used to form polyelectrolyte multilayers (PEMs). The surface characteristic of the modified microchip was studied by XPS. The electroosmotic flow (EOF) on PEMs modified PDMS microchips was more stable than that of the native PDMS microchips and the adsorption of samples was greatly reduced on PEMs modified PDMS microchips during the electrophoretic process. The column efficiencies on PEMs modified microchip were increased by 100 times and the signals enhanced by 2 times compared with those of native microchips. The separation conditions such as running buffer pH, running buffer concentration and separation voltage were also optimized.  相似文献   

7.
We have used the AT-cut quartz crystal sensor to measure in real-time the total cholesterol concentration in buffer and serum, using the trienzyme system of cholesterol esterase (ChE), cholesterol oxidase (ChOx) and horseradish peroxidase (HRP). The hydrogen peroxide produced from the ChE-ChOx reaction oxidises diaminobenzidine (DAB), in the presence of HRP. The response of the sensor to cholesterol is optimal in the presence of 0.1% (v/v) Triton X-100 at 0.2 U/ml ChOx, and 1 U/ml ChE. A response is obtained in less than 25 min. Using the optimal concentrations of the reagents, the linear range for free cholesterol and low density lipoprotein (LDL) cholesterol determination was between 50 and 300 μM, and 25 and 400 μM, respectively. It was found that the concentration of high density lipoprotein (HDL) cholesterol could not be determined because it solubilised the oxidised DAB, leading to poor adsorption at the crystal surface. We obtained a response to the use of cholesterol in serum at 300 μM, demonstrating that this biosensor could be used for cholesterol determination in clinical samples.  相似文献   

8.
Greg E. Collins  Qin Lu  Peter Wu 《Talanta》2007,72(1):301-304
A long pathlength, three-dimensional U-type flow cell was microfabricated and evaluated for improved absorbance detection on a glass microdevice. A small diameter hole (75 μm) was laser etched in a thin glass substrate whose thickness (100 μm) defined much of the pathlength of the cell. This substrate was thermally bonded and sandwiched between two different glass substrates. The top substrate contained a typical injection cross and separation microchannel. Projecting out of the plane of the separation device was a 126 μm pathlength flow cell as defined by the laser etched hole and the attached microchannels. The flow cell was connected to a microchannel on the bottom substrate that led to a waste reservoir. The planar, flat windows on the top and bottom of this device made light introduction and collection a simple matter using a light emitting diode (LED) and microscope objective. The experimentally obtained detection limit for rhodamine B was determined to be 0.95 μM, which is nearly identical to the theoretical limit calculated by Beer's Law. A separation of three fluorescent dyes was performed, and direct comparisons were made between the transmittance changes through the narrow pathlength separation microchannel and the adjacent long pathlength, three-dimensional U-type flow cell.  相似文献   

9.
A method for the separation of six selected antihyperglycemic (antidiabetic) drugs (tolbutamide, gliclazide, glimepiride, glibenclamide, repaglinide, and glipizide) was developed with use of micellar electrokinetic chromatography. Two non-ionic poly(ethylene glycol)-based surfactants Genapol X-080 and Triton X-114 (reduced) were studied as neutral pseudostationary phases. High alkaline pH 10.0 was used to obtain negative charges of separated antidiabetic drugs and non-ionic surfactants were employed for selectivity alteration. Both non-ionic surfactants provided good selectivity at concentration 0.2% (v/v) in sodium borate buffer and the separation of six drugs was obtained within 5 min. An on-line preconcentration method based on reversed electrode polarity switching was employed for the determination of antihyperglycemic drugs in blood serum after acetonitrile protein precipitation. The limits of detection ranged from 20.8 nmol L−1 for tolbutamide to 6.5 nmol L−1 for glibenclamide, respectively.  相似文献   

10.
A CPE-HPLC (UV) method was developed for the determination of Sudan (I-IV) dyes, non-ionic surfactant Triton X-100 was used to extract and preconcentrate Sudan dyes from chilli powder prior to their determination by HPLC-UV. The separation and determination of Sudan dyes was then carried out in the HPLC-UV system with isocratic elution, and the detector was set at 500 nm. The parameters and variables that affect the extraction were investigated. Under optimum conditions: 3% of Triton X-100 (W/V), 10% of Na2CO3 (W/V), heat-assisted at 70 °C for 30 min. Recoveries of the Sudan dyes ranged from 80.70% to 85.45% in chilli powder by CPE method, with all the relative standard deviations of less than 3%. Limit of detection (LOD) and limit of quantification (LOQ) were in the range of 2.0-4.0 and 7.0-12.0 μg kg−1 in chilli powder, respectively.  相似文献   

11.
The determination of a group of eighteen pollutants in waters, including polycyclic aromatic hydrocarbons and substituted phenols, is conducted in direct-immersion solid-phase microextraction (SPME) using the polymeric ionic liquid (PIL) poly(1-vinyl-3-hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide as a novel coating material. The performance of the PIL fiber coating in the developed IL-SPME-gas chromatography (GC)–mass spectrometry (MS) method is characterized by average relative recoveries of 92.5% for deionized waters and 90.8% for well waters, average precision values (as relative standard deviations, RSD%) of 11% for deionized waters and 12% for well waters, using a spiked level of 5 ng mL−1. The detection limits oscillate from 0.005 ng mL−1 for fluoranthene to 4.4 ng mL−1 for 4-chloro-3-methylphenol, when using an extraction time of 60 min with 20 mL of aqueous sample. The extraction capabilities of the PIL fiber have been compared with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, PDMS 100 μm and polyacrylate (PA) 85 μm. The PIL fiber is superior to the PDMS 30 μm for all analytes studied. A qualitative study was also carried out to compare among the nature of the coating materials by normalizing the coating thickness. The PIL material was shown to be more efficient than the PDMS material for all analytes studied. The PIL coating was also adequate for nonpolar analytes whereas the PA material was more sensitive for polar compounds.  相似文献   

12.
The lateral-flow immunoassay (LFA) is an inexpensive and rapid paper-based assay that can potentially detect infectious disease biomarkers in resource-poor settings. Despite its many advantages that make it suitable for point-of-care diagnosis, LFA is limited by its inferior sensitivity relative to sophisticated laboratory-based assays. Our group previously introduced the use of a micellar aqueous two-phase system (ATPS), comprised of the nonionic Triton X-114 surfactant, to concentrate biomarkers in a sample and enhance their detection with LFA. However, achieving complete phase separation and target concentration using the Triton X-114 system required many hours, and the concentrated sample needed to be manually extracted and applied to LFA. Here, we successfully integrated the concentration and detection steps into a single step that occurs entirely within a portable paper-based diagnostic strip. In a novel approach, we applied the micellar ATPS to a 3-D paper design and effectively reduced the macroscopic phase separation time from 8 h to approximately 3 min. The 3-D design was integrated with LFA to simultaneously concentrate and detect Plasmodium lactate dehydrogenase (pLDH), a malaria biomarker, in both phosphate-buffered saline and fetal bovine serum within 20 min at room temperature. Compared to a conventional LFA setup with a pLDH detection limit of 10 ng μL−1, our single-step diagnostic successfully detected pLDH at 1.0 ng μL−1, demonstrating a 10-fold detection limit improvement and resulting in a sensitive and user-friendly assay that can be used at the point-of-care. The integration of a micellar ATPS and LFA represents a new platform that can improve and promote the use of paper-based diagnostic assays for malaria and other diseases within resource-poor settings.  相似文献   

13.
Liu JM  Liu ZB  Lu QM  Li FM  Hu SR  Zhu GH  Huang XM  Li ZM  Shi XM 《Analytica chimica acta》2007,598(2):205-213
In the presence of ion perturber LiAc, 4-generation polyamidoamine dendrimers (4G-D) could emit strong and stable room temperature phosphorescence (RTP) signal at on nitrocellulose membrane (NCM), and Triton X-100 could sharply enhance the RTP signal of 4G-D. Triton X-100-4G-D was used to label concanavalin agglutinin (Con A) to get the labeling product Triton X-100-4G-D-Con A. Quantitative specific affinity adsorption (AA) reaction between Triton X-100-4G-D-Con A and α-fetoprotein variant (AFP-V) could be carried out on the surface of NCM, whose product Triton X-100-4G-D-Con A-AFP-V could emit strong and stable RTP and its ΔIp was proportional to the content of AFP-V. According to the facts above, a new affinity adsorption solid substrate-room temperature phosphorimetry (AA-SS-RTP) for the determination of trace AFP-V by Con A labeled with Triton X-100-4G-D was established. Detection limits of this method were 0.23 fg spot−1 (direct method, corresponding concentration: 5.8 × 10−13 g mL−1) and 0.13 fg spot−1 (sandwich method, corresponding concentration: 3.2 × 10−13 g mL−1). It has been successfully applied to determine the content of AFP-V in human serum and forecast human diseases, for its high sensitivity, long RTP lifetime, good repeatability, high accuracy and little background perturbation with at the long wavelength area. Meanwhile, the mechanism for the determination of trace AFP-V using AA-SS-RTP was also discussed.  相似文献   

14.
A cloud point extraction (CPE) method has been developed for the preconcentration of trace aluminum prior to its determination by flame atomic absorption spectrometry (FAAS). The CPE method is based on the complex of Al(III) with Xylidyl Blue (XB) and then entrapped in non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of XB and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 50 was obtained for the preconcentration of Al(III) with 50 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 1.43 μg L− 1, and the relative standard deviation is 2.7% at determination of 100 μg L− 1 Al(III). The proposed method has been applied for determination of trace amount of aluminum in mineral water samples with satisfactory results. Also, the proposed method was applied to the certified reference materials. The results obtained were in good agreement with certified values.  相似文献   

15.
A new glass/PDMS hybrid chip for contactless conductivity detection is reported. This chip consists of a glass substrate with microchannels and a PDMS cover sheet embedded with a small integrated electrode plate. In the region of detection, electrodes are insulated from the microchannel by a formed PDMS membrane about 100 μm in thickness. Without any modification, this glass/PDMS chip is suitable for contactless conductivity detection with good properties, such as excellent heat-dissipation, stable electroosmotic flow, high separation efficiency, satisfactory sensitivity, simple construction and high degree of integration. Its feasibility and performance had been demonstrated by analyzing inorganic ions and amino acids in mixtures, and alkaloids in traditional Chinese medicine. The limits of detection reached micromole per liter (μmol L?1) levels. This microchip could be promising for mass production due to its stability, reproducibility, ease of fabrication and low cost.  相似文献   

16.
In-channel indirect amperometric detection mode for microchip capillary electrophoresis with positive separation electric field is successfully applied to some heavy metal ions. The influences of separation voltage, detection potential, the concentration and pH value of running buffer on the response of the detector have been investigated. An optimized condition of 1200 V separation voltage, −0.1 V detection potential, 20 mM (pH 4.46) running buffer of 2-(N-morpholino)ethanesulfonic acid (MES) + l-histidine (l-His) was selected. The results clearly showed that Pb2+, Cd2+, and Cu2+ were efficiently separated within 80 s in a 3.7 cm long native separation PDMS/PDMS channel and successfully detected at a single carbon fibre electrode. The theoretical plate numbers of Pb2+, Cd2+, and Cu2+ were 1.2 × 105, 2.5 × 105, and 1.9 × 105 m−1, respectively. The detection limits for Pb2+, Cd2+, and Cu2+ were 1.3, 3.3 and 7.4 μM (S/N = 3).  相似文献   

17.
Cai Z  Chen H  Chen B  Huang C 《Talanta》2006,68(3):895-901
A micro flow injection wetting film liquid-liquid extraction system has been developed for trace analyte concentration and on-chip detection. A hydrophobic channel fabricated on a polycarbonate chip was used to support the wetting film, and hydrostatic pressure generated by the difference in liquid levels was employed to drive the fluids. Sequential injection of segments of aqueous sample solution and organic solvent was conducted by switching the sample- or solvent-containing vials to an on-chip sampling probe, and detection was performed by a co-focused, laser induced fluorescence detector. Using butyl rhodamine B as a model analyte and butanol as the solvent for both film-coating and elution, various experimental conditions such as hydrostatic pressure, coating time, channel length, sampling volume, and sample acidity were investigated. Under optimized conditions, a 24-fold enrichment factor was obtained with the consumption of about 3 μL sample solution, and a detection limit (3σ) of 6.0 × 10−9 M butyl rhodamine B was achieved at the sampling rate of 19 h−1. Eleven consecutive runs of a 1.0 × 10−5 M butyl rhodamine B solution produced a relative standard deviation of 1.5% for the detected fluorescence signals.  相似文献   

18.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

19.
Zhao J  Chen Z  Li X  Pan J 《Talanta》2011,85(5):2614-2619
A microfluidic chip manufactured from glass substrate and indium tin oxide (ITO) coated glass use for contactless conductivity detection was developed. The detecting electrodes were fabricated by screen-printing and chemical etching methods using an ITO-coated glass wafer. Then, the glass substrate containing separation channels was bonded with the bare side of the processed ITO-coated glass, thus producing an electrophoresis chip integrated with contactless conductivity detector. The prepared microchip displayed considerable stability and reproducibility. Sensitive response was obtained at optimal conditions (including the gap between electrodes, excitation frequency, and excitation voltage). The feasibility of this microfluidic device was examined by detection of inorganic ions, and further demonstrated by the quantification of aminopyrine and caffeine in a compound pharmaceutical. The two ingredients can be completely separated within 1 min. The detection limits were 8 μg mL−1 and 3 μg mL−1, respectively; with the correlation coefficient of 0.996-0.998 in the linear range from 10 μg mL−1 to 800 μg mL−1. The results have showed that the present method is sensitive, reliable and fast.  相似文献   

20.
Two polycrystalline graphites (pencil lead and glassy carbon) were used as sorbents for solid-phase microextraction of a nonionic alkylphenol ethoxylate surfactant (Triton X-100). Analyses were performed by reversed-phase HPLC-fluorescence detection. The presence of the benzene ring in the congeners of Triton X-100 also allowed their direct detection at lambda(ex) = 230 nm and lambda(em) = 310 nm. Variables such as time of adsorption, time of desorption and concentration of surfactant in water were evaluated. The method limit of detection was found to be 0.5 microg/l for Triton X-100, with a linear dynamic range of 0.5-150 microg/l. Results were compared to those obtained using polymeric fibers such as PDMS/DVB and Carbowax/TPR. The chemical resistance and low cost of the polycrystalline graphites are advantageous over commercially available SPME fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号