首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The systematic change of a resonance state with high momenta is studied with increasing particle density in the 2D attractive Hubbard model. Within the conserving self-consistent T-matrix approximation, we present the spectral functions for the one and two particle Green's functions as well as the self-energy. In the small density limit, the resonant state becomes stable and the result from the self-consistent calculations shows a good agreement with that from a simple analytical calculation. As particle density is increased, the resonance state acquires a short lifetime due to the increasing decay into two free particles.  相似文献   

2.
The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.  相似文献   

3.
Fluctuation of the average spin for one-dimensional Ising spins with nearest neighbor interactions are studied. The distribution function for the average spin is calculated for a finite volume, finite temperature, and finite magnetic field. As the volume increases and the temperature diminishes at zero magnetic field, there are two limits in which the probability distribution shows quite different behaviors: in the thermodynamic limit as the volume goes to infinity for finite temperature, small deviations of the fluctuations are described by a Gaussian distribution, and in the limit as the temperature vanishes for a finite volume, the ground states are realized with probability one. The crossover between these limits is analyzed via a ratio of the correlation length to the volume. The helix-coil transition in a polypeptide is discussed as an application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号