首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1 μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9 ± 0.1 μg L−1 MC-LR, 1.3 ± 0.1 μg L−1 CYN, 61 ± 4 μg L−1 ANA-a, 5.4 ± 0.4 μg L−1 STX and 4.9 ± 0.9 μg L−1 DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC–IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC–IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.  相似文献   

2.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

3.
The detection of toxins in shellfish through reliable methods is essential for human health preservation and prevention of economic losses in the aquaculture industry. Although no human intoxication has been unequivocally linked to gymnodimines or spirolides, these phycotoxins are highly toxic by intraperitoneal injection causing false positives in lipophilic toxin detection by the mouse bioassay. Based on the detection of molecular interactions by fluorescence polarization an inhibition assay was developed using fluorescent α-bungarotoxin and nicotinic acetylcholine receptor-enriched membranes of Torpedo marmorata to detect gymnodimine and 13-desmethyl C spirolide. Both toxins, classified into the cyclic imine group, inhibit the interaction of α-bungarotoxin with Torpedo nicotinic acetylcholine receptors in the nM range. In this study we analyze the matrix effect of four shellfish species on the fluorescence polarization assay. Mussels, clams, cockles and scallops were extracted with acetone and sequentially partitioned with n-hexane and chloroform. The interference of these shellfish extracts with the α-bungarotoxin fluorescence or its binding to the nicotinic acetylcholine receptor was lower than 11%. The average recovery rates of gymnodimine and 13-desmethyl C spirolide using these solvents were 90.6 ± 7.8% and 89.6 ± 3.2%, respectively with variations among species. The quantification range of this fluorescence polarization assay for gymnodimine and 13-desmethyl C spirolide in all tested species was 80-2000 μg kg−1 and 85-700 μg kg−1 of shellfish meat, respectively. This assay format can be used to detect gymnodimine and 13-desmethyl C spirolide in shellfish as a screening assay.  相似文献   

4.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

5.
Ulusoy Hİ  Akçay M  Gürkan R 《Talanta》2011,85(3):1585-1591
The simple and rapid preconcentration technique using cloud point extraction (CPE) was applied for the determination of As(V) and total inorganic arsenic (As(V) plus As(III)) in water samples by means of FAAS. As(V) has formed an ion-pairing complex with Pyronine B in the presence of cetyl pyridinium chloride (CPC) at pH 8.0 and extracted into the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was separated and diluted with 1.0 mol L−1 HNO3 in methanol. The proposed method is very versatile and economic because it exclusively used conventional FAAS. After optimization of the CPE conditions, a preconcentration factor of 120, the detection and quantification limits of 1.67 and 5.06 μg L−1 with a correlation coefficient of 0.9978 were obtained from the calibration curve constructed in the range of 5.0-2200 μg L−1. The relative standard deviation, RSD as a measure of precision was less than 4.1% and the recoveries were in the range of 98.2-102.4%, 97.4-101.2% and 97.8-101.1% for As(V), As(III) and total As, respectively. The method was validated by the analysis of standard reference materials, TMDA-53.3 and NIST 1643e and applied to the determination of As(III) and As(V) in some real samples including natural drinking water and tap water samples with satisfactory results. The results obtained (34.70 ± 1.08 μg L−1 and 60.25 ± 1.07 μg L−1) were in good agreement with the certified values (34.20 ± 1.38 μg L−1 and 60.45 ± 1.78 μg L−1).  相似文献   

6.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

7.
Biosensor immunoassays for the detection of bisphenol A   总被引:1,自引:0,他引:1  
Bisphenol A (BPA) is a xenoestrogen found in the environment, in consequence, for the biosensor detection of BPA we raised antibodies (polyclonal (PAbs) and monoclonal (MAbs)) against a structural analogue of BPA, 4,4 bis-(4-hydroxyphenyl) valeric acid (BVA). The kinetics of the MAb-BPA interaction were evaluated and the MAb providing the highest affinity was directly immobilized onto the sensor chip surface to evaluate a direct assay. Afterwards, the performance of the MAbs and the PAbs was compared in an inhibition assay using a BVA-coated chip.The highest sensitivity (limit of detection (LOD) of 0.4 μg L−1) was obtained with MAb 12 in the direct assay. However, the inhibition assay was the most robust and the PAbs showed the highest sensitivity (LOD of 0.5-1 μg L−1). The antibodies were specific for BVA and BPA as only minor cross-reactivities were found toward structurally related compounds or other endocrine disruptors. In the inhibition assay (with a run time of 6 min), water samples spiked with BPA at different levels (0.5-50 μg L−1) resulted in recoveries varying between 68% and 121%. The sensitivity of the inhibition assay could be improved 40 times (LOD of 0.03 μg L−1 with the Mab 12-based assay) using solid phase extraction (SPE).  相似文献   

8.
A highly sensitive, specific, simple, and rapid chemiluminescence enzyme immunoassay (CLEIA) was developed for the determination of microcystin-LR (MC-LR). Several physicochemical parameters such as the chemiluminescent assay mediums, the dilution ratio of MC-LR-OVA conjugate, monoclonal antibody concentration, and peroxidase labeled antibody concentration were studied and optimized. Under optimum conditions, calibration curve obtained for MC-LR had detection limits of 0.032 ± 0.003 μg L−1, the 50% inhibition concentration (IC50) was 0.20 ± 0.02 μg L−1 and the quantitative detection range was 0.062-0.65 μg L−1. The proposed methods was successfully applied to the monitoring of MC-LR in spiked water samples without significant effect of the matrix, and the recovery of MC-LR added to water samples at different concentrations ranged from 80% to 115% with the coefficients of variation (CVs) less than 9%. The LOD attained from the calibration curves and the results obtained for the real samples demonstrate the potential use of CLEIA as a screening tool for the analysis of MC-LR in environmental samples.  相似文献   

9.
In this study, the steroid hormone levels in river and tap water samples were determined by using a novel dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO). Several parameters were optimized, including the type and volume of the extraction and dispersive solvents, extraction time, and salt effect. DLLME-SFO is a fast, cheap, and easy-to-use method for detecting trace levels of samples. Most importantly, this method uses less-toxic solvent. The correlation coefficient of the calibration curve was higher than 0.9991. The linear range was from 5 to 1000 μg L−1. The spiked environmental water samples were analyzed using DLLME-SFO. The relative recoveries ranged from 87% to 116% for river water (which was spiked with 4 μg L−1 for E1, 3 μg L−1 for E2, 4 μg L−1 for EE2 and 9 μg L−1 for E3) and 89% to 102% for tap water (which was spiked with 6 μg L−1 for E1, 5 μg L−1 for E2, 6 μg L−1 for EE2 and 10 μg L−1 for E3). The detection limits of the method ranged from 0.8 to 2.7 μg L−1 for spiked river water and 1.4 to 3.1 μg L−1 for spiked tap water. The methods precision ranged from 8% to 14% for spiked river water and 7% to 14% for spiked tap water.  相似文献   

10.
Liang Y  Liu XJ  Liu Y  Yu XY  Fan MT 《Analytica chimica acta》2008,615(2):174-183
A general and broad class-specific enzyme-linked immunosorbent assay was developed for the O,O-dimethyl organophosphorus pesticides, including malathion, dimethoate, phenthoate, phosmet, methidathion, fenitrothion, methyl parathion and fenthion. Three haptens with different spacer-arms were synthesized. The haptens were conjugated to bovine serum albumin (BSA) for immunogens and to ovalbumin (OVA) for coating antigens. Rabbits were immunized with the immunogens and six polyclonal antisera were produced and screened against each of the coating antigens using competitive indirect enzyme-linked immunosorbent assay for selecting the proper antiserum. The effect of hapten heterology on immunoassay sensitivity was also studied. The antibody-antigen combination with the most selectivity for malathion was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50 values, under optimum conditions, were estimated to be 30.1 μg L−1for malathion, 28.9 μg L−1 for dimethoate, 88.3 μg L−1 for phenthoate, 159.7 μg L−1 for phosmet, 191.7 μg L−1 for methidathion, 324.0 μg L−1 for fenitrothion, 483.9 μg L−1 for methyl parathion, and 788.9 μg L−1 for fenthion. Recoveries of malathion, dimethoate, phenthoate, phosmet and methidathion from fortified Chinese cabbage samples ranged between 77.1% and 104.7%. This assay can be used in monitoring studies for the multi-residue determination of O,O-dimethyl organophosphorus pesticides.  相似文献   

11.
Azoxystrobin is a modern strobilurin fungicide used around the world to combat prime diseases affecting highly valuable crops. Accordingly, residues of this chemical are frequently found in food, even though mostly under maximum tolerated levels. We herein describe the development of an indirect competitive immunoassay for the determination of azoxystrobin residues. A panel of monoclonal antibodies displaying subnanomolar affinity to azoxystrobin was generated using, as immunizing haptens in mice, four functionalized derivatives carrying the same spacer arm located at different rationally chosen positions. This collection of antibodies was thoroughly characterized with homologous and heterologous antigens, and the immunoassay consisting of monoclonal antibody AZo6#49 and the coating conjugate OVA–AZb6, which displayed an IC50 value of 0.102 μg L−1 and a LOD of 0.017 μg L−1, was eventually optimized. The response to different pH and ionic strength conditions of the specific assay was studied using a biparametric approach. In addition, the influence of Tween 20 and organic solvents over the assay parameters was also evaluated. After optimization, the developed immunochemical assay was applied to the analysis of azoxystrobin in spiked juices of relevant fruits and vegetables, showing excellent recoveries between 2 and 500 μg L−1.  相似文献   

12.
A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 μg L−1, with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 μg L−1 (λ-cyhalothrin), 3.0-60.0 μg L−1 (methyl parathion), 9.0-60.0 μg L−1 (ethion), and 9.0-30.0 μg L−1 (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n = 26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 μg L−1. The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.  相似文献   

13.
Fipronil, a phenylpyrazole insecticide introduced for pest control on a broad range of crops, can also affect non-target insects such as honeybees. More widely, non-target environment such as milk produced by dairy cows fed with maize silage from treated seeds (=silage T) can be affected. To assess the potential transfer of fipronil residues (sulfone, sulfide, fipronil, desulfinyl and amide), a methodology including gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) analysis was developed and validated according to the 2002/657/EC decision, in order to reach a level of quantification below 0.1 μg L−1 in milk and 0.1 μg kg−1 in plants. Twelve dairy cows were fed with silage T during 4 months. Concentration of fipronil in treated seeds was estimated at 1 g kg−1, whereas silage from these seeds contained 0.30 ± 0.05 μg kg−1 of dry material of fipronil, 0.13 ± 0.03 μg kg−1 of dry material of sulfone. Sulfide residues were below the limit of quantification. Silage from untreated seeds (=silage U) presented traces of fipronil and sulfone, respectively at 0.04 ± 0.06 and 0.02 ± 0.03 μg kg−1 of dry material. Contribution of fipronil residues from supplies was insignificant. During administration of silage T, only sulfone residues were quantified in milk. The average concentration was 0.14 ± 0.05 μg L−1. Before and after administration, sulfone residues were detected but not quantifiable (<0.025 μg L−1). Our results suggest a transfer of fipronil from feed to milk under its sulfone form. Moreover, traces of fipronil residues in maize U, soya, wheat and straw show a diffuse contamination of this pesticide in the environment.  相似文献   

14.
A fast, economic and sensitive chemiluminescence (CL) method has been developed for the analysis of cetrizine hydrochloride (CET) in pharmaceutical formulations and in biological fluids. The CL method is based on the oxidation of tris(2,2′-bipyridyl)ruthenium(II) (Ru (bipy)32+) by peroxydisulphate in a two-chip device. Up to 180 samples can be analysed per hour, consuming only minute quantities of reagents. Three instrumental setups were tested to find the most economical, sensitive and high throughput setup. In the first setup, a continuous flow of sample and CL reagents was used, whereas in the second setup, a fixed volume (2 μL) of (Ru (bipy)32+) was introduced into a continuous infusion of peroxydisulphate and the sample. In the third design, a fixed volume of sample (2 μL) was injected while the CL reagents were continuously infused. Compared to the first setup, a 200% signal enhancement was observed in the third setup. Various parameters that influence the CL signal intensity, including pH, flow rates and reagent concentrations, were optimized. A linear response was observed over the range of 50 μg L−1 to 6400 μg L−1 (R2 = 0.9959) with RSD values of 1.1% (n = 15) for 1000 μg L−1. The detection limit was found to be 15 μg L−1 (S/N = 3). The amount of consumed sample was only 2 μL, from which the detected amount of CET was found to be 6.5 × 10−14 mol. This procedure was successfully applied to the analysis of CET in pharmaceutical formulations and biological fluids.  相似文献   

15.
Highly luminescent Eu3+ and Tb3+ complexes of 10-[4-(3-isothiocyanatopropoxy)benzoylmethyl]-1,4,7,10-tetraazacyclododecane-1,4,7 triacetic acid Eu3+ ⊂ 1 and Tb3+ ⊂ 1 were conjugated with a goat anti-rabbit IgG and a rabbit anti-mouse IgG, respectively, and applied as markers in a time resolved immunoassay for simultaneous quantitative determination of anabolic compounds clenbuterol (CL) and hydrocortisone (HC). The assay was performed in horse urine, using a monoclonal antibody specific to CL and a rabbit polyclonal antibody specific to the free HC. These lanthanide chelates are very stable and highly luminescent in aqueous solution and allowed to reach 10 μg L−1 and 40 μg L−1 sensitivities for CL and for HC, respectively. Application to the horse urine, that is a very complex matrix, has a considerable interest in the control of illegal use of these compounds.  相似文献   

16.
A competitive enzyme-linked immunosorbent assay for dopamine (DA) has been optimized and characterized. DA is sensitive to oxygen and light according to a function of the pH on the DA oxidation process. The phenolic groups in DA are readily oxidisable to a quinoid form and thus, free DA deteriorates in alkaline media. Thus, effect of factors such as pH, enzyme-label with substrate, ionic strength and reaction time was considered on performance of ELISA. Assay was performed with 5 μg mL−1 of BSA-DA and 1/7500 dilution of anti-DA antibody. A dose-response curve was constructed, and a limit of detection and a dynamic range for DA were accomplished to 1.0 × 10−9 M (0.19 μg L−1) and five orders (3.2 × 10−8 M to 3.2 × 10−3 M) of magnitude, respectively. The correlation diagram of the absorbance obtained both in buffer and in serum has shown good agreement with correlation coefficient (R2 = 0.9947): Abs. (in serum) = 0.6128 × Abs. (in buffer) + 0.2926. The cross-reactivity was examined with the structurally similar compounds. And the results demonstrated that epinephrine and 3-methoxytyramine showed cross-reactivity (18.9% each), whereas 3,4-dihydroxyphenylacetic acid and homovanillic acid showed low cross-reactivity (<1%). And percent recoveries of DA in serum were quite satisfactory. This provides usefulness of the present assay to monitor DA in serum.  相似文献   

17.
An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe2+ in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe2+ the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe2+ was 0.0988–3.5 μg mL−1. The ligand showed a high chromogenic selectivity for Fe2+ over other cations with a detection limit of 0.102 μg mL−1 in solution (lower than the WHO drinking water guideline limit of 2 mg L−1), and 2 μg mL−1 in the solid state. The concentration of Fe2+ in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L−1, which was comparable with the certified value of 2.44 ± 0.12 mg L−1. Application of the probe to real samples spiked with Fe2+ achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.  相似文献   

18.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

19.
In the paper, an enzyme-linked immunosorbent immunoassay (ELISA) for detection of enrofloxacin was described using one new derivative of enrofloxacin as coating hapten, resulting in surprisingly high sensitivity and specificity. Incorporation of aminobutyric acid (AA) in the new derivative of enrofloxacin had decreased the IC50 of the ELISA for enrofloxacin from 1.3 μg L−1 to as low as 0.07 μg L−1. The assay showed neglect cross-reactivity for other fluoroquinolones but ofloxacin (8.23%), marbofloxacin (8.97%) and pefloxacin (7.29%). Analysis of enrofloxacin fortified chicken muscle showed average recoveries from 81 to 115%. The high sensitivity and specificity of the assay makes it a suitable screening method for the determination of low levels of enrofloxacin in chicken muscle without clean-up step.  相似文献   

20.
Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg−1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L−1 and 15–24 μg L−1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg−1 and 10 μg kg−1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices at relatively low concentrations and in principle it will be suitable for the analysis of other types of functionalized fullerenes that were not included in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号