首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti is frequently used in implants and prostheses and it has been shown before that the presence of these in the human body can lead to elevated Ti concentrations in body fluids such as serum and urine. As identification of the exact mechanisms responsible for this increase in Ti concentrations, and the risks associated with it, are not fully understood, it is important to have sound analytical methods that enable straightforward quantification of Ti levels in body fluids (for both implanted and non-implanted individuals). Until now, only double-focusing sector field ICP-mass spectrometry (SF-ICP-MS) offered limits of detection that are good enough to deal with the very low basal levels of Ti in human serum. This work reports on the development of a novel method for the accurate and precise determination of trace levels of Ti in human serum samples, based on the use of ICP-MS/MS. O2 and NH3/He have been compared as reaction gases. While the use of O2 did not enable to overcome all spectral interferences, it has been shown that conversion of Ti+ ions into Ti(NH3)6+ cluster ions by using NH3/He as a reaction gas in an ICP-QQQ-MS system, operated in MS/MS mode, provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L−1 (instrumental detection limit obtained for the most abundant Ti isotope). The accuracy of the method proposed was evaluated by analysis of a Seronorm Trace Elements Serum L-1 reference material and by comparing the results obtained with those achieved by means of SF-ICP-MS. As a proof-of-concept, the newly developed method was successfully applied to the determination of Ti in serum samples obtained from individuals with and without Ti-based implants. All results were found to be in good agreement with those obtained by means of SF-ICP-MS. The typical basal Ti level in human serum was found to be <1 μg L−1, while values in the range of 2–6 μg L−1 were observed for implanted patients.  相似文献   

2.
Polybrominated diphenyl ethers (PBDEs) are flame retardants, which due to their widespread use are frequently present as pollutants in the environment. In the EU Water Framework Directive (WFD) six PBDE congeners (BDE 28, BDE47, BDE 99, BDE 100, BDE 153 and BDE 154) are listed as priority substances. The uncertainty of the analytical method used for their determination in water samples at environmental quality standard (EQS) level (0.5 ng L−1 for the ΣPBDEs) should be equal or less than 50% and the limit of quantification (LOQ) for ΣPBDEs below 0.15 ng L−1. To meet these requirements, an analytical procedure for the determination of these six PBDEs in environmental water samples by gas chromatography–inductively coupled plasma mass spectrometry (GC–ICP-MS) was developed. The acidification of water samples to pH 2 maintained the stability of PBDEs for at least 20 days. The use of Tris–citrate buffer enabled efficient desorption of PBDEs from suspended particulate matter (SPM) and humic acids (HA), and their further quantitative solvent extraction into 2 mL of iso-octane. When 300 mL of water sample was used for analysis and the organic phase concentrated to 25 μL, the expanded uncertainty for determination of PBDEs at EQS level was found to be around 40% (a coverage factor for a confidence level of 95%, k = 2), and the LOQ for the ΣPBDEs 0.109 ng L−1. Finally, to demonstrate the applicability of the newly developed GC–ICP-MS procedure, PBDEs were determined in river and sea water samples.  相似文献   

3.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

4.
A method for carbonic anhydrase II (CA II) absolute quantification in human serum is presented. This method is based on high-performance liquid chromatography (HPLC)-Chip microfluidic device incorporating a nanoelectrospray source interfaced to a triple quadrupole mass spectrometer. The fraction containing CA II was isolated by preparative reversed-phase HPLC, and peptides obtained from the tryptic digest of the protein mixture were separated by the HPLC-Chip system. The multiple-reaction monitoring acquisition mode of a selected suitable CA II peptide and peptide internal standard allowed the selective and sensitive determination of a CA II. Absolute recovery of the method was 52 ± 12%, while analytical recovery was 81 ± 10%. For the eight samples analyzed, the matrix effect was found to be only −14 ± 6%. A comparison among three regression lines type which were obtained by external calibration, matrix-matched calibration, and standard addition method, respectively, demonstrated that the first one is adequate in obtaining good accuracy and precision. Method quantification limit for CA II in serum was estimated to be 2 fmol/mL. CA II mean concentration in sera from eight healthy subjects was found to be 56 pmol/mL (relative standard deviation 24%).  相似文献   

5.
A one-step extraction and clean-up method using pressurized liquid extraction (PLE) (selective PLE) combined with gas chromatography-ion-trap tandem mass spectrometry (GC-ITMS-MS) was evaluated for the analysis of polybrominated diphenyl ethers (from tri- to hepta-PBDEs) at low concentrations in fish and shellfish samples. To this end, the performance of an on-line PLE extraction/clean-up method and of a classical Soxhlet extraction and clean-up method using a multi-layer modified silica column were compared. The two sample treatment methods provided similar results, although an important reduction in the sample treatment time (40 min per sample) was achieved using the selective PLE method. In addition, the suitability of the PLE combined with GC-ITMS-MS method was evaluated by comparing the results obtained in the analysis of fish samples with those obtained by gas chromatography-high resolution mass spectrometry (GC-HRMS). Good agreement between both techniques was obtained with differences between the mean values of less than 16%. The selective PLE method coupled to GC-ITMS-MS produced accurate results for PBDE determination with low limits of detection (1.0-16.8 pg g−1 wet weight) and quantification (3.1-51 pg g−1 wet weight) as well as good precision (RSD < 16%). This method has been applied to the analysis of PBDEs in fish and shellfish samples collected at fish markets in Catalonia (NE Spain).  相似文献   

6.
A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L−1 showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present method was successfully validated and applied to determination of bovine lactoferrin in dairy products including infant formulas.  相似文献   

7.
The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 μg kg−1 were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 μg kg−1 for acrylamide. The GC-MECD method achieved quantification limits of 10 μg kg−1 in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 μg kg−1 detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.  相似文献   

8.
Hepcidin is a peptide hormone that functions as a key regulator of mammalian iron metabolism. Biological levels are increased in end‐stage renal disease and during inflammation but suppressed in hemochromatosis. Thus hepcidin levels have diagnostic importance. This study describes the development of an analytical method for the quantitative determination of the concentration of hepcidin in clinical samples. The fragmentation of hepcidin was investigated using triple quadrupole and linear ion trap mass spectrometers. A standard quantity of a stable isotopically labelled hepcidin internal standard was added to serum samples. Extraction was performed by protein precipitation and weak cation‐exchange magnetic nanoparticles. Chromatography was carried out on sub 2 µm particle stationary phase, using ultra‐high‐pressure liquid chromatography and a linear ion trap for quantitation. The lower limit of quantitation was 0.4 nmol/L with less than 20% accuracy and precision. The mean hepcidin concentration in sera for controls was 4.6 ± 2.7 nmol/L, in patients with sickle cell disease, 7.0 ± 8.9 nmol/L; in patients with end‐stage renal disease, 30.5 ± 15.7 nmol/L; and patients with penetrant hereditary hemochromatosis, 1.4 ± 0.8 nmol/L. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
It is well documented and experimentally confirmed that hexabromocyclododecanes (HBCDs) tend to associate with several anions forming different adducts that can affect the sensitivity and the accuracy of the determinations. In the present work, two different approaches for HBCD determination have been optimised and characterised based on their repeatability and intermediate precision, linear calibration ranges, sensitivity, limits of detection and quantification and application to commercial food samples. Both methods involve the use of a triple quadrupole mass spectrometer coupled to a liquid chromatograph and the addition of different ammonium salts to the mobile phase, i.e. ammonium chloride or ammonium acetate, in order to encourage (Cl method) or try to inhibit (Ac method), respectively, the formation of the chlorine adducts of the molecular ion. Precision of the two methods investigated was similar and both approaches presented a comparable behaviour for the analysis of food samples. However, the Cl method showed higher sensitivity and the limits of detection (0.23–0.41 pg on column) and quantification (0.77–1.35 pg on column) were up to 14 times lower than those obtained applying the Ac method. All these facts make the Cl method the best choice for the quantification of HBCDs in food samples with low concentration levels.  相似文献   

10.
11.
An analytical method for the determination of US EPA priority pollutant 16 polycyclic aromatic hydrocarbons (PAHs) in edible oil was developed by an isotope dilution gas chromatography–mass spectrometry (GC–MS). Extraction was performed with ultrasonication mode using acetonitrile as solvent, and subsequent clean-up was applied using narrow gel permeation chromatographic column. Three deuterated PAHs surrogate standards were used as internal standards for quantification and analytical quality control. The limits of quantification (LOQs) were globally below 0.5 ng/g, the recoveries were in the range of 81–96%, and the relative standard deviations (RSDs) were lower than 20%. Further trueness assessment of the method was also verified through participation in international cocoa butter proficiency test (T0638) organised by the FAPAS with excellent results in 2008. The results obtained with the described method were satisfying (z ≤ 2). The method has been applied to determine PAH in real edible oil samples.  相似文献   

12.
This work presents an advantageous analytical procedure for the accurate determination of free trans-resveratrol in red and white wines. The proposed method involves solid-phase extraction (SPE), acetylation of the analyte in aqueous media and further determination by gas chromatography (GC) with mass spectrometry detection (MS). The use of a mixed-mode SPE sorbent provides an improvement in the selectivity of the extraction step; moreover, the presence of several intense ions in the electron impact mass spectra of its acetyl derivative guarantees the unambiguous identification of trans-resveratrol. Considering a sample intake of 10 mL, the method provides a limit of quantification (LOQ) of 0.8 ng mL−1 and linear responses for concentrations up to 2.5 μg mL−1, referred to wine samples. The average recovery, estimated with samples fortified at different concentrations in the above range, was 99.6% and the inter-day precision stayed below 8%. Trans-resveratrol levels in the analyzed wines varied from 3.4 to 1810 ng mL−1. Cis-resveratrol was also found in all samples. In most cases, equal or higher responses were measured for this latter form than for the trans-isomer. The reduced form of resveratrol, dihydro-resveratrol, was systematically identified in red wines.  相似文献   

13.
A simple method for the direct determination of residues of ionophore antibiotics and avermectin antiparasitics in surface water is reported. Using a large volume injector, a mixture of methanol and surface water is injected into an analytical liquid chromatography (LC) column and subsequently screened for residues of these veterinary pharmaceuticals using electrospray ionization tandem mass spectrometry. On-line sample enrichment and chromatographic separation are achieved using a single, short (20 mm) octadecylsilane LC column. The method permits the detection of four ionophores and two avermectins in surface water samples at low ng L−1 concentrations. Minimal matrix effects were observed for a variety of surface water samples which permitted the use of reagent-based standards for quantitation.  相似文献   

14.
Barron L  Paull B 《Talanta》2006,69(3):621-630
A new analytical procedure for the simultaneous determination of trace oxyhalides and haloacetic acids (HAs) in drinking water and aqueous soil extracts is described. The method uses micro-bore ion chromatography (IC) coupled with suppressed conductivity (SC) and electrospray ionization mass spectrometric detection (ESI-MS). The IC-SC-ESI-MS system included a secondary flow of 100% MeOH, which was added to the column eluate (post-suppressor) and resulted in a significant increase in sensitivity for all analytes. All ESI-MS parameters were optimized for HA analysis and sensitivity quantitatively compared to suppressed conductivity. Full analytical performance characteristics for the developed method are presented for monochloro-, monobromo-, dichloro-, dibromo-, trichloro-, bromochloro, chlorodifluoro-, trifluoro-, dichlorobromo- and dibromochloroacetic acid, as well as the oxyhalides iodate, bromate, chlorate and perchlorate. In the case of the HAs, an optimised 25-fold SPE preconcentration method meant all analytes could be readily detected well below the USEPA 60 μg/L regulatory limit using conductivity and/or ESI-MS. The IC-ESI-MS method was applied to the determination of oxyhalides and HAs in both soil extracts and drinking water samples. Soil samples were extracted using ultra pure water with subsequent determination of perchlorate at 1.68 μg/g of soil. A drinking water sample containing HAs was preconcentrated using LiChrolut EN solid phase extraction cartridges with subsequent sulphate and chloride removal. Total HAs were determined at 13 μg/L.  相似文献   

15.
Bisphenol A (BPA) is a widely used plasticizer that can contaminate food and the wider environment and lead to human exposure. In humans, it is mainly metabolized to bisphenol A-glucuronide (BPA-G) and eliminated in the urine. As BPA causes adverse physiological effects at low doses, it is necessary to document the toxicokinetics of both molecules for risk assessment. Because BPA-G is not available as an analytical standard, it is usually quantified after the assay of BPA, following an enzymatic hydrolysis with β-glucuronidase. With this approach, two separate assays are required for BPA and BPA-G quantification, which can lead to critical pitfalls in terms of accuracy and analysis time. To overcome this problem, we have developed a new method for the isolation and purification of BPA-G from urine by flash chromatography. Large amounts of BPA-G (1 g) were isolated and characterized by mass spectrometry and NMR. This BPA-G is suitable for an use as analytical standard and enabled us to develop a novel method for the simultaneous quantification of BPA and BPA-G in biological matrices by UPLC/MS/MS. It has also been used for in vivo toxicokinetic studies in sheep. The method of quantification was validated according FDA guidelines and used to monitor the time course of plasma and urine concentrations of BPA or BPA-G following their administration. The simultaneous quantification of BPA and BPA-G was compared to the commonly used method for urine and plasma samples. For plasma samples, the results obtained with the direct assay of BPA-G were similar to those obtained by quantification after enzymatic hydrolysis. With urine samples, the simultaneous quantification appeared to be more suitable than the hydrolysis method for the BPA-G determination.  相似文献   

16.
We performed the quantification of phosphorus in deoxynucleotides using capillary electrophoresis (CE) and micro-HPLC (μHPLC) hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). DNA and its component units have conventionally been determined by photometry; however, more selective and sensitive methods are needed for small biological samples. CE and μHPLC offer the advantages of good separation and small consumption of samples, and ICP-MS is a highly sensitive technique for the determination of a chemical element. Therefore, we have developed an interface device for combining CE and μHPLC with ICP-MS for quantifying nucleotides based on phosphorus content. The interface utilizes 4.5 μL/min for nebulizing and effective introduction of the sample into ICP. The samples of nucleotides and free phosphoric acid were well separated in the CE–ICP-MS measurement, and the calibration curves (1–100 μg/mL) of the nucleotides showed a linear (R2 > 0.999) increase in intensity. Similarly, the samples of nucleotides were baseline separated using μHPLC–ICP-MS, and the calibration curves of the nucleotides were linear (R2 > 0.998). The detection limits of these species and phosphorus in nucleotides using CE–ICP-MS and μHPLC–ICP-MS were 0.77–6.5 ng/mL and 4.0–6.5 ng/mL, respectively. These values were about one or two orders lower than those in a previous report. The sample volumes of these experiments were calculated to be about 10 nL and 50 nL per analysis. Therefore, these analytical methods have the potential to be useful for the determination of biological samples, such as DNA and RNA molecules.  相似文献   

17.
An accurate and reliable method for determining polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols is described. This optimised gas chromatography-mass spectrometry (GC-MS) method permits a wide range of concentrations to be analysed without the influence of interferences.Pre-treatment comparison of four kinds of aerosol collector filters determined that quartz and glass fibre filters were the most suitable. Solvents like cyclohexane, toluene, acetonitrile and dichloromethane were evaluated for their PAH-extraction capacity. Ultrasonic extraction using CH2Cl2 was selected because it is rapid and easy; moreover, this solvent increases the sample-throughput capacity.PAH compounds were quantitatively collected and ultrasonically extracted twice using 15 mL of CH2Cl2 for 15 min for each replicate. Rotavapor concentration, fractionation and dissolution were also optimised.A certified standard mixture (16 EPA PAHs), a deuterated compound and precision recovery assays were used for validating the proposed methodology. Adequate analytical parameters were obtained. Detection limits were (1.6-26.3) × 10−5 ng and quantification limits were (5.2-87.6) × 10−5 ng.Analysis of the environmental samples detected 4-10 EPA list PAH compounds. In addition, 2-11 tentative compounds were found, and their molecular structures were described for the first time.Our study of both Youden method and the standard addition method has shown that the proposed determination of PAHs in environmental samples is free of systematic errors.In conclusion, this unbiased methodology improves the identification and quantification of PAH compounds. High sensitivity as well as acceptable detection and quantification limits were obtained for the environmental applications.  相似文献   

18.
Four analytical approaches, based on different physical principles, for the determination of antimony (Sb) and arsenic (As) in ancient peat samples were critically evaluated: (a) open vessel digestion/hydride generation-atomic absorption spectrometry (HG-AAS), (b) closed-pressurized digestion in a microwave oven followed by sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS), (c) digestion in a microwave autoclave and subsequent quadrupole-inductively coupled plasma-mass spectrometry (Q-ICP-MS) measurements and (d) instrumental neutron activation analysis (INAA). The quality control scheme applied, always included the use of adequate plant reference materials to ensure the accuracy and precision of the analytical procedures. Additionally, two internal peat reference materials were analyzed using all four analytical approaches, generally showing good agreement for both elements. Method detection limits for As and Sb provided by all procedures were approximately 5 and 2 ng g−1 which is sufficiently low for the reliable quantification of both elements in ancient, pre-anthropogenic peat samples. A comparison of As and Sb concentrations in a set of peat samples determined by INAA, HG-AAS and SF-ICP-MS revealed that INAA underestimated the values in a systematic manner, whereas HG-AAS and SF-ICP-MS data agreed very well. Best precision of the results was obtained by analytical procedures involving HG-AAS or Q-ICP-MS and varied from 3.6 to 4.3% and 7.1 to 7.5% for As (at about 0.5 μg g−1) and Sb (at about 0.1 μg g−1), respectively. The highest sample throughput (40 samples per run accomplished in 2 h) combined with low risk of sample contamination could be realized in the high-pressure microwave autoclave. The amount of sample required by all approaches was 200 mg, except for INAA which needed at least 25 times more sample mass to achieve comparable detection limits. For the quantification of As and Sb, inductively coupled plasma-mass spectrometry (ICP-MS) was preferred over INAA and HG-AAS, mainly because (a) less sample is needed and (b) As and Sb can be determined simultaneously. In addition, ICP-MS offers the possibility to measure concurrently a wide range of other elements which also are of environmental interest.  相似文献   

19.
Exposure to fragrance substances is exponentially increasing in our daily life due to the enhanced use of scented products. Some fragrances are known to be important sensitizers, inhalation being an important exposure pathway in indoor environments. A simple and sensitive method based on solid-phase enrichment and solid-phase microextraction (SPME) followed by gas chromatography–mass spectrometry (GC–MS) has been developed for the analysis of 24 volatile fragrance allergens in indoor air. Suspected allergens present in the air (0.2 m3) were adsorbed onto a very small quantity of florisil (25 mg) and then transferred to a SPME fiber in the headspace mode (HS). To the best of our knowledge, this paper describes the first application of SPME for the determination of these compounds in air samples. The experimental parameters affecting the microextraction process have been optimized using a multifactor experimental design strategy. Accuracy, linearity, precision and detection limits (LODs) were evaluated to assess the performance of the proposed method. External calibration, using spiked sorbent standards, and not requiring the complete sampling process (only the SPME step), demonstrated to be suitable for the quantification of all suspected allergens. Recovery studies were performed at three concentration levels (0.04, 1.00 and 50 μg m−3), obtaining quantitative recoveries (≥85%) in most cases. LOD values at the low ng m−3 level were achieved for all the target compounds. The application of the method to daily home air samples demonstrated the ubiquity of this kind of fragrance ingredients in quotidian indoor environments, finding 18 of the 24 considered compounds in concentrations ranging from 0.01 to 56 μg m−3. Benzyl alcohol, linalool, citronellol, ionone and lilial were found in most analyzed samples.  相似文献   

20.
Two simple analytical methods for the simultaneous determination and quantification of benzotrifluoride and eight chlorinated, amino and nitro benzotrifluoride derivatives in groundwater are proposed. Benzotrifluoride, 4-chlorobenzotrifluoride, 2,4-dichlorobenzotrifluoride and 3,4-dichlorobenzotrifluoride, were extracted by Purge-and-Trap on the basis of their volatile properties, while 3-aminobenzotrifluoride, 4-nitrobenzotrifluoride, 3-amino-4-chlorobenzotrifluoride, 3-nitro-4-chlorobenzotrifluoride and 4-chloro-3,5-dinitrobenzotrifluoride extractions were done with an automated SPE system. The analytical separations and detections were performed with two different GC systems, both equipped with single quadrupole mass spectrometer as detector. The LOD ranges for the two methods were 0.002–0.005 μg L−1 and 0.01–0.07 μg L−1, respectively. Both extraction methods were developed using spiked Milli-Q water and were then demonstrated with groundwater samples collected during autumn 2008. The areas of groundwater collection were polluted due to an episode of improper industrial soil disposal and consequent leakage of aliphatic and aromatic, fluorinated chemicals into the groundwater. This work eventually revealed the presence of several benzotrifluoride compounds most of them, like dichloro- and amino-derivatives, never been reported as environmental contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号