首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport and reaction in microscale segmented gas-liquid flow   总被引:2,自引:0,他引:2  
We use micro particle image velocimetry (microPIV) and fluorescence microscopy techniques to characterize microscale segmented gas-liquid flow at low superficial velocities relevant for chemical reactions with residence times of up to several minutes. Different gas-liquid microfluidic channel networks of rectangular cross section are fabricated in poly(dimethylsiloxane) (PDMS) using soft lithography techniques. The recirculation motion in the liquid segments associated with gas-liquid flows as well as the symmetry characteristics of the recirculations are quantified for straight and meandering channel networks. Even minor surface roughness effects and the compressibility of the gas phase induce loss of symmetry and enhance mixing across the centerline in straight channels. Mixing is further accelerated in meandering channels by the periodic switching of recirculation patterns across the channel center. We demonstrate a new, piezoelectrically activated flow injection technique for determining residence time distributions (RTDs) of fluid elements in multiphase microfluidic systems. The results confirm a narrowed liquid phase RTD in segmented flows in comparison to their single-phase counterparts. The enhanced mixing and narrow RTD characteristics of segmented gas-liquid flows are applied to liquid mixing and in sol-gel synthesis of colloidal nanoparticles.  相似文献   

2.
The preparation of surfaces in microfluidic devices that selectively retain proteins may be difficult to implement due to the incompatibility of derivatization methods with microdevice fabrication techniques. This review describes recently reported developments in simple and rapid methods for engineering the surface chemistries of microchannels based on construction of press-fit microdevices. These devices are fabricated by placing a glass fiber on a PDMS film and pressing the film on a silicon wafer or a microscope slide that has been derivatized with octadecyltrichlorosilane (ODS). The film adheres to the slide and forms an elliptically shaped channel around the fiber. The combination of surface wettability of a hydrophilic glass microfiber and the surrounding hydrophobic microchannel surfaces directs a narrow boundary layer of liquid next to the fiber in order to bring the sample in contact with the separation media and results in selective retention of proteins. This phenomenon may be exploited to enable microscale separation applications since there are a wide variety of fibers available with different chemistries. These may be used to rapidly fabricate microchannels that serve as stationary phases for separation at a microscale. The fundamental properties of such devices are discussed.  相似文献   

3.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

4.
Desai AV  Tice JD  Apblett CA  Kenis PJ 《Lab on a chip》2012,12(6):1078-1088
Microvalves are critical in the operation of integrated microfluidic chips for a wide range of applications. In this paper, we present an analytical model to guide the design of electrostatic microvalves that can be integrated into microfluidic chips using standard fabrication processes and can reliably operate at low actuation potentials (<250 V). Based on the analytical model, we identify design guidelines and operational considerations for elastomeric electrostatic microvalves and formulate strategies to minimize their actuation potentials, while maintaining the feasibility of fabrication and integration. We specifically explore the application of the model to design microfluidic microvalves fabricated in poly(dimethylsiloxane), using only soft-lithographic techniques. We discuss the electrostatic actuation in terms of several microscale phenomena, including squeeze-film damping and adhesion-driven microvalve collapse. The actuation potentials predicted by the model are in good agreement with experimental data obtained with a microfabricated array of electrostatic microvalves actuated in air and oil. The model can also be extended to the design of peristaltic pumps for microfluidics and to the prediction of actuation potentials of microvalves in viscous liquid environments. Additionally, due to the compact ancillaries required to generate low potentials, these electrostatic microvalves can potentially be used in portable microfluidic chips.  相似文献   

5.
Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.  相似文献   

6.
Liu W  Li L  Wang JC  Tu Q  Ren L  Wang Y  Wang J 《Lab on a chip》2012,12(9):1702-1709
Microfluidic trapping methods create significant opportunities to establish highly controlled cell positioning and arrangement for the microscale study of numerous cellular physiological and pathological activities. However, a simple, straightforward, dynamic, and high-throughput method for cell trapping is not yet well established. In the present paper, we report a direct active trapping method using an integrated microfluidic device with pneumatic microstructures (PμSs) for both operationally and quantitatively dynamic localization of cells, as well as for high-throughput cell patterning. We designed and fabricated U-shape PμS arrays to replace the conventional fixed microstructures for reversible trapping. Multidimensional dynamics and spatial consistency of the PμSs were optically characterized and quantitatively demonstrated. Furthermore, we performed a systematic trapping investigation of the PμSs actuated at a pressure range of 0 psi to 20 psi using three types of popularly applied mammalian cells, namely, human lung adenocarcinoma A549 cells, human hepatocellular liver carcinoma HepG2 cells, and human breast adenocarcinoma MCF-7 cells. The cells were quantitatively trapped and controlled by the U-shape PμSs in a programmatic and parallel manner, and could be opportunely released. The trapped cells with high viability were hydrodynamically protected by the real-time actuation of specifically designed umbrella-like PμSs. We demonstrate that PμSs can be applied as an active microfluidic component for large-scale cell patterning and manipulation, which could be useful in many cell-based tissue organization, immunosensor, and high-throughput imaging and screening.  相似文献   

7.
Jeong W  Kim J  Kim S  Lee S  Mensing G  Beebe DJ 《Lab on a chip》2004,4(6):576-580
A microfluidic apparatus capable of creating continuous microscale cylindrical polymeric structures has been developed. This system is able to produce microstructures (e.g. fibers, tubes) by employing 3D multiple stream laminar flow and "on the fly"in-situ photopolymerization. The details of the fabrication process and the characterization of the produced microfibers are described. The apparatus is constructed by merging pulled glass pipettes with PDMS molding technology and used to manufacture the fibers and tubes. By controlling the sample and sheath volume flow rates, the dimensions of the microstructures produced can be altered without re-tooling. The fiber properties including elasticity, stimuli responsiveness, and biosensing are characterized. Responsive woven fabric and biosensing fibers are demonstrated. The fabrication process is simple, cost effective and flexible in materials, geometries, and scales.  相似文献   

8.
Recent advances in microfabrication have allowed one to pattern the surface of a solid substrate with patches of different wettabilities on the micrometer-sized scale. These textured surfaces provide a well-characterized model system for studying the wetting and dewetting behaviors of liquids on heterogeneous surfaces. They also present a well-defined template to direct the self-organization of liquids on the surfaces of solid substrates, and to form patterned microstructures of various materials without using expensive, clean-room facilities. As demonstrated in a number of studies, the three-dimensional morphologies of the liquid microstructures could be easily controlled by changing the two-dimensional features patterned on the surface of a solid substrate. These demonstrations suggest that microfabrication based on surface patterning and selective wetting or dewetting will offer immediate advantages in applications such as fabrication of microreactor arrays and microfluidic devices, where a liquid (or solution) is the primary material to be patterned.  相似文献   

9.
A fabrication platform for realizing integrated microfluidic devices is discussed. The platform allows for creating specific microsystems for multistep assays in an ad hoc manner as the components that perform the assay steps can be created at any location inside the device via in situ fabrication. The platform was utilized to create a prototype microsystem for detecting botulinum neurotoxin directly from whole blood. Process steps such as sample preparation by filtration, mixing and incubation with reagents was carried out on the device. Various microfluidic components such as channel network, valves and porous filter were fabricated from prepolymer mixture consisting of monomer, cross-linker and a photoinitiator. For detection of the toxoid, biotinylated antibodies were immobilized on streptavidin-functionalized agarose gel beads. The gel beads were introduced into the device and were used as readouts. Enzymatic reaction between alkaline phosphatase (on secondary antibody) and substrate produced an insoluble, colored precipitate that coated the beads thus making the readout visible to the naked eye. Clinically relevant amounts of the toxin can be detected from whole blood using the portable enzyme-linked immunosorbent assay (ELISA) system. Multiple layers can be realized for effective space utilization and creating a three-dimensional (3-D) chaotic mixer. In addition, external materials such as membranes can be incorporated into the device as components. Individual components that were necessary to perform these steps were characterized, and their mutual compatibility is also discussed.  相似文献   

10.
Because fluids at the microscale form three dimensional interfaces and are subject to three dimensional forces, the ability to create microstructures with modulated topography over large areas could greatly improve control over microfluidic phenomena (e.g., capillarity and mass transport) and enable exciting novel microfluidic applications. Here, we report a method for the fabrication of three-dimensional relief microstructures, based on the emergence of smooth features when a photopolymer is exposed to UV light through a transparency mask with binary motifs. We show that homogeneous features emerge under certain critical conditions that are also common to other, apparently unrelated, phenomena such as the emergence of macroscopic continuum properties of composite materials and the rates of ligand binding to cell membrane receptors. This fabrication method is simple and inexpensive, and yet it allows for the fabrication of microstructures over large areas (centimetres) with topographic modulation of features with characteristic dimensions smaller than 100 micrometres.  相似文献   

11.
Song W  Yang J 《Lab on a chip》2012,12(7):1251-1254
We present a novel optofluidic differential method for carrying out absorbance spectroscopy of sub-nanolitre volumes of liquid samples on a microfluidic chip. Due to the reduction of liquid volume, the absorbance detection in microfluidics is often hindered by either low sensitivity or complex fabrication. To address this issue, we introduced an optofluidic modulator which can be easily integrated into a PDMS (polydimethylsiloxane) based microfluidic chip. The modulator was controlled by the fluid pressure and the absorbance spectrum of the analyte was obtained by taking differential measurements between the analyte and reference medium. An advantage is that this method doesn't need a complicated fabrication step. It is compatible with conventional microfluidic chips and measurements can be carried out on a normal transmission microscope. The performance of the device was tested by measuring solutions containing methylene blue, with concentrations as low as 13 μM.  相似文献   

12.
There are only a few examples in which beads are employed for heterogeneous assays on microfluidic devices, because of the difficulties associated with packing and handling these in etched microstructures. This contribution describes a microfluidic device that allows the capture, preconcentration, and controlled manipulation of small beads (<6 microm) in etched microchannels using fluid flows only. The chips feature planar diverging and converging channel elements connected by a narrow microchannel. Creation of bi-directional liquid movement by opposing electro-osmotic and pressure-driven flows can lead to the generation of controlled recirculating flow at these elements. Small polymer beads can actually be captured in the controlled rotating flow patterns. The clusters of freely moving beads that result can be perfused sequentially with different solutions. A preliminary binding curve was determined for the reaction of streptavidin-coated beads and fluorescein-labelled biotin, demonstrating the potential of this bead-handling approach for bioanalysis.  相似文献   

13.
SU-8 and polydimethylsiloxane (PDMS) are both transparent materials with properties very convenient for rapid prototyping of microfluidic systems. However, previous efforts of combining these two materials failed due to poor adhesion between them. Herein, we introduce a promising low-temperature technique (< 100 °C) to irreversibly bond two or more structured layers of SU-8 and PDMS to create hybrid stacks. This offers new possibilities in design and fabrication of enclosed three-dimensional microstructures and microchannels with simple soft-lithography techniques. The potential of this method is demonstrated by the fabrication of a new version of our microfluidic sensor cartridge that was reported recently1.  相似文献   

14.
Luecha J  Hsiao A  Brodsky S  Liu GL  Kokini JL 《Lab on a chip》2011,11(20):3419-3425
An alternative green microfluidic device made of zein, a prolamin of corn, can be utilized as a disposable environmentally friendly microchip especially in agriculture applications. Using standard soft lithography and stereo lithography techniques, we fabricated thin zein films with microfluidic chambers and channels. These were bonded to both a glass slide and another zein film. The zein film with microfluidic features bonds irreversibly with other surfaces by vapor-deposition of ethanol to create an adhesive layer resulting in very little or no trapped air and small shape distortion. Zein-zein and zein-glass microfluidic devices demonstrated sufficient strength to facilitate fluid flow in a complex microfluidic design that showed no leakage under high hydraulic pressure. Zein-glass microfluidic devices with serpentine mixing design showed successful fluid manipulation as a concentration gradient of Rhodamine B solution was generated. The ease of fabrication and bonding and the flexibility and moldability of zein offer attractive possibilities for microfluidic device design and manufacturing. These devices can include several unit operations with mixing being one of the most commonly used. The zein-based microfluidic devices, made entirely from a biopolymer from agricultural origin, offer alternative environmentally friendly material choices that are less dependent on limited petroleum based polymer resources.  相似文献   

15.
Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.  相似文献   

16.
This paper presents a simple method to change the hydrophilic nature of the glass surface in a poly(dimethylsiloxane) (PDMS)-glass hybrid microfluidic device to hydrophobic by an extra-heating step during the fabrication process. Glass substrates bonded to a native or oxygen plasma-treated PDMS chip having microchambers (12.5 mm diameter, 110 μm height) were heated at 200°C for 3 h, and then the hydrophobicity of the glass surfaces on the substrate was evaluated by measuring the contact angle of water. By the extra-heating process, the glass surfaces became hydrophobic, and its contact angle was around 109°, which is nearly the same as native PDMS surfaces. To demonstrate the usefulness of this surface modification method, a PDMS-glass hybrid microfluidic device equipped with microcapillary vent structures for pneumatic manipulation of droplets was fabricated. The feasibility of the microcapillary vent structures on the device with the hydrophobic glass surfaces are confirmed in practical use through leakage tests of the vent structures and liquid handling for the electrophoretic separation of DNA molecules.  相似文献   

17.
The development of a microfluidic biosensor module with fluorescence detection for the identification of pathogenic organisms and viruses is presented in this article. The microfluidic biosensor consists of a network of microchannels fabricated in polydimethylsiloxane (PDMS) substrate. The microchannels are sealed with a glass substrate and packed in a Plexiglas housing to provide connection to the macro-world and ensure leakage-free flow operation. Reversible sealing permits easy disassembly for cleaning and replacing the microfluidic channels. The fluidic flow is generated by an applied positive pressure gradient, and the module can be operated under continuous solution flow of up to 80 microL min(-1). The biosensor recognition principle is based on DNA/RNA hybridization and liposome signal amplification. Superparamagnetic beads are incorporated into the system as a mobile solid support and are an essential part of the analysis scheme. In this study, the design, fabrication and the optimization of concentrations and amounts of the different biosensor components are carried out. The total time required for an assay is only 15 min including sample incubation time. The biosensor module is designed so that it can be easily integrated with a micro total analysis system, which will combine sample preparation and detection steps onto a single chip.  相似文献   

18.
So JH  Dickey MD 《Lab on a chip》2011,11(5):905-911
This paper describes the fabrication and characterization of microelectrodes that are inherently aligned with microfluidic channels and in direct contact with the fluid in the channels. Injecting low melting point alloys, such as eutectic gallium indium (EGaIn), into microchannels at room temperature (or just above room temperature) offers a simple way to fabricate microelectrodes. The channels that define the shape and position of the microelectrodes are fabricated simultaneously with other microfluidic channels (i.e., those used to manipulate fluids) in a single step; consequently, all of the components are inherently aligned. In contrast, conventional techniques require multiple fabrication steps and registration (i.e., alignment of the electrodes with the microfluidic channels), which are technically challenging. The distinguishing characteristic of this work is that the electrodes are in direct contact with the fluid in the microfluidic channel, which is useful for a number of applications such as electrophoresis. Periodic posts between the microelectrodes and the microfluidic channel prevent the liquid metal from entering the microfluidic channel during injection. A thin oxide skin that forms rapidly and spontaneously on the surface of the metal stabilizes mechanically the otherwise low viscosity, high surface tension fluid within the channel. Moreover, the injected electrodes vertically span the sidewalls of the channel, which allows for the application of uniform electric field lines throughout the height of the channel and perpendicular to the direction of flow. The electrodes are mechanically stable over operating conditions commonly used in microfluidic applications; the mechanical stability depends on the magnitude of the applied bias, the nature of the bias (DC vs. AC), and the conductivity of the solutions in the microfluidic channel. Electrodes formed using alloys with melting points above room temperature ensure mechanical stability over all of the conditions explored. As a demonstration of their utility, the fluidic electrodes are used for electrohydrodynamic mixing, which requires extremely high electric fields (~10(5) V m(-1)).  相似文献   

19.
We present a microfluidic cell-culture chip that enables trapping, cultivation and release of selected individual cells. The chip is fabricated by a simple hybrid glass-SU-8-PDMS approach, which produces a completely transparent microfluidic system amenable to optical inspection. Single cells are trapped in a microfluidic channel using mild suction at defined cell immobilization orifices, where they are cultivated under controlled environmental conditions. Cells of interest can be individually and independently released for further downstream analysis by applying a negative dielectrophoretic force via the respective electrodes located at each immobilization site. The combination of hydrodynamic cell-trapping and dielectrophoretic methods for cell releasing enables highly versatile single-cell manipulation in an array-based format. Computational fluid dynamics simulations were performed to estimate the properties of the system during cell trapping and releasing. Polystyrene beads and yeast cells have been used to investigate and characterize the different functions and to demonstrate biological compatibility and viability of the platform for single-cell applications in research areas such as systems biology.  相似文献   

20.
Micro-periodic structures exhibiting shape memory have been fabricated on organic–inorganic hybrid films. The microscale structures are obtained by forming wrinkles via buckling of the stiff surface layer. The surface-modified layers are obtained by surface photopolymerization or by oxidation of the hybrid films. The microscale structures are spontaneously formed by the shrinkage of the underlayer via gelation. The surface microstructures on titania- or silica-based films with hydrophilic swellable polymers exhibit a humidity response, i.e., a shape memory effect. This is observed when the surface microstructure disappears and is subsequently recovered with cyclic variation of the surrounding humidity. Micro-rolls are also fabricated by the selective swelling of surface-modified layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号