首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Xiao-tong Chen 《Talanta》2010,80(5):1952-4801
A novel fluorescence turn-on detection method of human serum albumin (HSA) and bovine serum albumin (BSA) in aqueous solution is investigated using 2,4-dihydroxyl-3-iodo salicylaldehyde azine (DISA). Upon the addition of DISA to HSA/BSA solution, a fluorescence turn-on effect at 529 nm can be observed with a large stokes shift of ∼129 nm based on hydrophobic binding-mode between protein and dye. Under the optimal condition, the linear ranges of fluorescence intensity for HSA and BSA are 0.1-30 μg mL−1 with the relative correlation coefficient of R2 = 0.991 (n = 10) and 0.3-50 μg mL−1 with R2 = 0.997 (n = 10); and the detection limits for HSA and BSA based on IUPAC (CDL = 3Sb/m) are 20 ng mL−1 and 50 ng mL−1, respectively.  相似文献   

2.
A new, simple and highly sensitive method for spectrofluorimetric determination of amiloride (AMI) and furosemide (FUR) in pharmaceuticals is presented. The proposed method is based on the separation of AMI from FUR by solid-phase extraction using a nylon membrane, followed by spectrofluorimetric determination of both drugs, on the solid surface and the filtered aqueous solution, respectively. AMI shows low native fluorescence, but its separation-preconcentration by immobilization (solid-phase extraction) on nylon membrane surface provides a considerable enhancement in fluorescence intensity. The fluorescence determination is carried out at λex = 237, λem = 415 nm for FUR; and λex = 365, λem = 406 nm for AMI. The calibration graphs are linear in the range 3.20 × 10−4 to 0.8 μg mL−1and 1.33 × 10−3 to 4.0 μg mL−1, for AMI and FUR, respectively, with a detection limit of 9.62 × 10−5 and 4.01 × 10−4 μg mL−1 (S/N = 3). The commonly found excipients in commercial pharmaceutical formulations do not interfere. The developed method is successfully applied to the determination of both drugs in pharmaceutical formulations.  相似文献   

3.
A simple and rapid reversed-phase HPLC-UV method was developed for the determination of triterpenic acids in the crude extract of Prunellae Spica. Five triterpenic acids were extracted and isolated from P. Spica as marker compounds for use in the quality control of herbal medicines. Various solvent extraction techniques were evaluated, and the greatest efficiency was observed with sonication in 100% ethanol. Elemental compositions of the five marker compounds were determined by high-resolution mass spectroscopy. The dynamic range of the HPLC-UV method depended on the specific analyte, and acceptable quantitation was obtained between 10 and 250 μg mL−1 for oleanolic acid, between 10 and 300 μg mL−1 for ursolic acid, between 3 and 75 μg mL−1 for 2α,3α,24-trihydroxyolean-12en-28oic acid, between 5 and 100 μg mL−1 for euscaphic acid, and between 5 and 100 μg mL−1 for 2α,3α-dihydroxyurs-12en-28oic acid. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision (relative standard deviation <9.4%). Overall limits of quantitation and detection were approximately 0.5-2.5 μg mL−1 at a signal-to-noise ratio (S/N) of 3 and were about 3.0-10.0 μg mL−1 at a S/N of 10. In addition, principal component analysis (PCA) was performed on the analytical data of 15 different P. Spica samples in order to classify samples collected from different regions.  相似文献   

4.
Four simple, rapid, accurate, precise, reliable and economical spectrophotometric methods have been proposed for simultaneous determination of salbutamol sulphate (SS), bromhexine hydrochloride (BH) and etofylline (ET) in pure and commercial formulations without any prior separation or purification. They were first derivative zero crossing spectrophotometry (method 1), simultaneous equation method (method 2), derivative ratio spectra zero crossing method (method 3) and double divisor ratio spectra derivative method (method 4). The ranges for SS, BH and ET were found to be 1-35 μg mL−1, 4-40 μg mL−1 and 5-80 μg mL−1. For methods 1 and 2, the values of limit of detection (LOD) were 0.2314 μg mL−1, 0.4865 μg mL−1 and 0.2766 μg mL−1 and the values of limit of quantitation (LOQ) were 0.7712 μg mL−1, 1.6217 μg mL−1 and 0.9221 μg mL−1 for SS, BH and ET, respectively. For method 3, LOD values were 0.3297 μg mL−1, 0.2784 μg mL−1 and 0.7906 μg mL−1 and LOQ values were 0.9325 μg mL−1, 0.9282 μg mL−1 and 2.6352 μg mL−1 for SS, BH and ET, respectively. For method 4, LOD values were 0.3161 μg mL−1, 0.2495 μg mL−1 and 0.2064 μg mL−1 and LOQ values were 0.9869 μg mL−1, 0.8317 μg mL−1 and 0.6879 μg mL−1 for SS, BH and ET. The precision values were less then 2% R.S.D. for all four methods. The common excipients and additives did not interfere in their determinations. The results obtained by the proposed methods have been statistically compared by means of Student t-test and by the variance ratio F-test.  相似文献   

5.
A simple, precise, accurate and validated, acetonitrile-free, reverse phase high performance liquid chromatography (HPLC) method is developed for the determination of melamine in dry and liquid infant formula. The separation is performed on a Kromasil C18 column (150 mm × 3.2 mm I.D., 5 μm particle size) at room temperature. The mobile phase (0.1% TFA/methanol 90:10) is pumped at a flow rate of 0.3 mL min−1 with detection at 240 nm. Melamine elutes at 3.7 min. A linear response (r > 0.999) is observed for samples ranging from 1.0 to 80 μg mL−1. The method provides recoveries of 97.2-101.2% in the concentration range of 5-40 μg mL−1, intra- and inter-day variation in <1.0% R.S.D. The limit of detection (LOD) and limit of quantification (LOQ) values are 0.1 μg mL−1 and 0.2 μg mL−1, respectively.  相似文献   

6.
Two novel carboxylphenyl-modified calix[4]arenes, tetrakis-carboxylphenylcalix[4]arene (TCPC) and 1,3-bis-carboxylphenylcalix[4]arene (BCPC), as well as a corresponding analogue for comparison, tetrakis-phenylcalix[4]arene (TPC), have been synthesized by palladium-catalyzed Suzuki cross-coupling of arylboronic acid and tetrabromocalix[4]arene as a key step. The binding properties of these calix[4]arene derivatives with bovine heart cytochrome c (cyt c) in dimethylformamide (DMF) was investigated by fluorescence spectroscopy. The binding affinity in the order of TCPC > BCPC ? TPC reflects a clear dependence on the number of carboxyl ligating groups attached onto a receptor and suggests the electrostatic force may be the predominant factor driving the complexing process. The stable 1:1 complexes of TCPC and BCPC with cyt c were evidenced with the binding constants of 3.15 × 106 and 5.85 × 105 L mol−1, respectively. Due to a large overlap between the emission spectrum of TCPC and the absorption spectrum of cyt c, and a short interaction distance (estimated to be 5.6 nm) between them, the fluorescence quenching of TCPC upon complexation with cyt c is attributed to an efficient energy transfer.  相似文献   

7.
In this paper, a novel optical nanoprobe (Mn:ZnSe d-dots-Arg6) for trypsin detection and its inhibitor screening has been constructed successfully based on the fluorescence quenching and recovery of Mn:ZnSe d-dots. Mn:ZnSe d-dots would aggregate in the presence of positively charged Arg6 (six arginine residues) due to electrostatic interactions that result in the fluorescence quenching. Arg6 can be hydrolyzed into small fragments in the presence of trypsin, and accordingly, the aggregation of Mn:ZnSe d-dots can be prohibited, which lead to the fluorescence recovery. Experimental results show that the recovery in fluorescence intensity is linearly proportional to the concentration of trypsin within the range of 0.1–12.0 μg mL−1 with a detection limit of 40 ng mL−1 under the optimized experimental conditions. We also prove the feasibility of fluorescence recovery of Mn:ZnSe d-dots for trypsin detection through the resonance light scattering (RLS) technique. Additionally, the optical nanoprobe can be employed for screening the inhibitors of trypsin. The optical nanoprobe was successfully applied for the determination of trypsin in human serum and urine samples with good accuracy and satisfactory recovery.  相似文献   

8.
Sensitive, rapid and inexpensive chemiluminescence (CL) imaging has been developed based on molecular imprinted polymer (MIP) sensing elements. Imprinted uniform microspheres were synthesized by precipitation polymerization. Microtiter plates (96 wells) were coated with polymer microspheres imprinted with trans-resveratrol, which were fixed in place using poly(vinyl alcohol) (PVA) as glue. The amount of polymer-bound trans-resveratrol was quantified using imidazole (IMZ)-catalyzed peroxyoxalate chemiluminescence (PO-CL) reaction. The light produced was then measured with a high-resolution CCD camera. Calibration curve corresponding to analyte concentration ranging from 0.3 to 25 μg mL−1 was obtained with a limit of detection 0.1 μg mL−1. These results showed that the MIP-based CL imaging sensor can become a useful analytical tool for quick simultaneous detection of trans-resveratrol in a large number of real samples.  相似文献   

9.
Flow-injection post chemiluminescence determination of atropine sulfate   总被引:1,自引:0,他引:1  
A new post chemiluminescence (PCL) reaction was observed when atropine sulfate was injected into the reaction mixture after the finish of CL reaction of Ce(IV) and sodium sulfite. The possible mechanism for the PCL reaction was discussed via the investigation of the CL kinetic characteristics, the CL spectra, the UV absorption spectra and the fluorescence spectra of some related substances. The flow injection PCL method for the determination of atropine sulfate was established. The relative standard deviation (R.S.D.) was 2.8% (n = 11, c = 5.0 × 10−6 g mL−1). The PCL intensity responded linearly to the concentration of atropine sulfate in the range 1.0 × 10−6 to 5.0 × 10−5 g mL−1 with a linear correlation of 0.9947. The detection limit was 4 × 10−7 g mL−1 atropine sulfate. The method had been applied to the determination of atropine sulfate in the tablets and the results were consistent with the method of Chinese pharmacopoeia.  相似文献   

10.
A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL−1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL−1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≧0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL−1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≧ 3) in urine was 5 ng mL−1 for MA and MDMA and 10 ng mL−1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.  相似文献   

11.
In this paper, the conversion of azoxystrobin in a strongly fluorescent degradation product by UV irradiation with quantitative purposes and its fluorimetric determination are reported for the first time. A multicommuted flow injection-solid phase spectroscopy (FI-SPS) system combined with photochemically-induced fluorescence (PIF) is developed for the determination of azoxystrobin in grapes, must and wine. Grape samples were homogenized and extracted with methanol and further cleaned-up by solid-phase extraction on C18 silica gel. Wine samples were solid-phase extracted on C18 sorbent using dichloromethane as eluent. Recoveries of azoxystrobin from spiked grapes (0.5-2.0 mg Kg−1), must (0.5-2.0 μg mL−1) and wine (0.5-2.0 μg mL−1) were 84.0-87.6%, 95.5-105.9% and 88.5-111.2%, respectively. The quantification limit for grapes was 0.021 mg Kg−1, being within European Union regulations, and 18 μg L−1 and 8 μg L−1 for must and wine, respectively.  相似文献   

12.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   

13.
A novel fluorescent probe for Cu2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu2+ between 2.4 × 10−2 μg mL−1 and 28 μg mL−1, with a detection limit of 1.3 × 10−3 μg mL−1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+. The fluorescent probe was successfully used for the determination of Cu2+ in environmental samples. The mechanism of reaction was also discussed.  相似文献   

14.
Since its extensive development in the early 1980s, SFE has attracted considerable attention as a sample-preparation procedure. However, other different sample preparation procedures, including precipitation, liquid- and/or solid-phase extraction in biological fluids, also remain in use. In this investigation, SFE was introduced to isolate and identify orbifloxacin from plasma and milk. Four parameters, including the temperature and the pressure of supercritical fluid, modifier ratios, and dynamic extraction time, were evaluated and optimized to obtain the best yield of the analyte from the biological fluids. Determinations of the orbifloxacin (OBFX) in the extracts were carried out using HPLC-FLD. The optimum conditions of the extraction process that yielded the maximum analyte extraction efficiencies were 150 °C vs. 60 °C, 250 kg cm−2, 30% vs. 35% methanol, and 40 min vs. 20 min, for plasma and milk, respectively. The linearity of the calibration curves as well as the instrument LODs/LOQs were evaluated. Good linearity (at least r2 ≥ 0.999) of the calibration curves was obtained over the range from 0.2 to 0.01 μg mL−1. The method showed a good recovery rate (74.2-127.73%) and precision (RSDs: 1.64-20%). The instrumental LOD and LOQ values were 0.004 μg mL−1 vs. 0.01 μg mL−1 or 0.006 μg mL−1 vs. 0.02 μg mL−1, for plasma and milk, respectively. The method was successfully applied to estimate the pharmacokinetic variables of orbifloxacin in lactating does. To the best of our knowledge, this is the first time that SFE has been applied to isolate an antimicrobial agent from biological fluids. This method is promising for clinical applications and for pharmacokinetic studies of various pharmaceuticals in biological fluids.  相似文献   

15.
K. Isaac-Olive  A. Chatt 《Talanta》2008,77(2):827-832
Iodine is an essential trace element for human beings. The main source of iodine is generally food items such as fish and milk. Either the lack or the excess of iodine can cause health problems. There exists an increasing interest in the determination of total iodine as well as various species of iodine in milk. We have developed an epithermal neutron activation analysis method with a Compton suppression (ENAA-CS) counting system for the determination of ng mL−1 levels of iodine. We have also employed chemical separation methods prior to ENAA-CS to measure the fraction-specific concentrations of iodine in bovine milk. We have measured the following iodine concentrations in homogenized milk (3.25%milk fat): 0.48 ± 0.02 μg mL−1 of total iodine, 0.020 ± 0.003 μg mL−1 of lipid-bound iodine, 0.039 ± 0.002, 0.019 ± 0.002 and 0.021 ± 0.004 μg mL−1 of protein-bound iodine depending on the protein separation method and 0.45 ± 0.02 μg mL−1 of inorganic species.  相似文献   

16.
Artemisinin isolated from the aerial parts of Artemisia annua L., is a promising and potent antimalarial drug, which meets the dual challenge posed by drug-resistant parasites and rapid progression of malarial illness. The aim of the current study was to develop a reliable and fast analytical procedure for the determination of artemisinin in A. annua using high performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD) in couple with microwave-assisted extraction (MAE) as an efficient sample preparation technique. The HPLC conditions were Agilent C18 column using water:acetonitrile (40:60 v/v) mixture as mobile phase at a flow rate of 1 mL min−1. ELSD conditions were optimized at nebulizer-gas flow rate of 2.0 L min−1 and drift tube temperature of 70 °C under the impactor off-mode, and the gain was set at 2. Afterwards, method validation system for HPLC-ELSD analysis was developed. Calibration range was 0.2-1.0 mg mL−1 and correlation coefficient r was above 0.9990. Precision experiments showed relative standard deviation (R.S.D.) of retention time was less than 0.5% and R.S.D. of peak area was less than 1.30%. Inter-day and intra-day variabilities showed that R.S.D. was ranged from 1.01% to 4.66%. Limit of detection was less than 40 μg mL−1 and limit of quantification was less than 100 μg mL−1. Accuracy validation showed that average recovery was between 98.23% and 104.97%. The developed analytical procedure was successfully applied to determine the contents of artemisinin in the different parts of A. annua plants.  相似文献   

17.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

18.
In this study we propose a chromogenic platform for rapid analysis of organophosphate (OP) and carbamate (CM) insecticide residues, based on recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE) as enzyme and indoxyl acetate as substrate. The visible chromogenic strip had the advantages identical to those of commonly used lateral flow assays (LFAs) with utmost simplicity in sample loading and result observation. After optimization, depending on the color intensity (CI) values, the well-established assay has the capabilities of both qualitative measurement via naked eyes and quantitative analysis by colorimetric reader with the desirable IC50 values against the tested six insecticides (0.06 μg mL−1 of carbofuran, 0.28 μg mL−1 of methomyl, 0.03 μg mL−1 of dichlorvos, 31.6 μg mL−1 of methamidophos, 2.0 μg mL−1 of monocrotophos, 6.3 μg mL−1 of omethoate). Acceptable matrix effects and satisfactory detection performance were confirmed by in-parallel LC–MS/MS analysis in different vegetable varieties at various spiked levels of 10−3 to 101 μg g−1. Overall, the testified suitability and applicability of this novel platform meet the requirements for practical use in food safety management and environmental monitoring, especially in the developing world.  相似文献   

19.
A novel, sensitive and high selective flow-injection chemiluminescence (FI-CL) method for the determination of phenol is reported, based upon its decreasing effect on the CL reaction of luminol with hydrogen peroxide catalyzed by manganese (III) deuteroporphyrin [MnDP, Scheme 1, 3] in alkaline solution. Under the selected optimized experimental conditions, the relative CL intensity was linear with phenol in the range of 4.0 × 10−9 to 4.0 × 10−7 g mL−1. The detection limit (3σ) was 6.3 × 10−10 g mL−1 and the relative standard deviation for 1.0 × 10−7 g mL−1 phenol (n = 11) was 2.99%. The regression equation was I = 120.79 + 1.14 × 1010c (R = 0.9936). This method has been applied to the determination of phenol in water with satisfactory results.  相似文献   

20.
A suitable method for the gas chromatographic determination of 10 characteristic carbonyls in biological and oil samples based on the in-drop formation of hydrazones by using 2,4,6-trichlorophenylhydrazine (TCPH), has been developed. The derivatisation-extraction procedure was optimized separately for aqueous and oil samples with respect to the appropriate organic drop solvent, drop volume, in-drop TCPH concentration, sample stirring rate, temperature during single-drop microextraction (SDME), reaction time and headspace-to-sample volume ratio. The optimization showed differentiation of optimum values between the studied matrices. The limits of detection were found to range from 0.001 to 0.003 μg mL−1 for the aqueous biological samples and from 0.06 to 0.20 μg mL−1 for the oil samples. The limits of quantification were in the range of 0.003-0.010 μg mL−1 and 0.020-0.059 μg mL−1 for aqueous and oil samples, respectively. The overall relative standard deviations of the within-day repeatability and between-day reproducibility were <4.4% and <8.2% for the aqueous biological samples and <3.9% and <7.4% for the oxidized oil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号